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A B S T R A C T   

Spectral ratio methods have been widely used in evaluation of nonlinear seismic site response. Nevertheless, it 
remains inefficient and subjective to identify stations with nonlinear site response according to empirical 
threshold values of spectral ratio nonlinear degree indicators. This study, which was the first to apply the ma-
chine learning clustering algorithm to address this problem, used the September 6, 2018 Mw6.6 Hokkaido Iburi- 
Tobu earthquake (Japan) as an example. First, we calculated the surface/borehole and horizontal/vertical 
spectral ratios using strong ground motion data recorded by KiK-net vertical array and K-NET stations, respec-
tively. The degree of nonlinear site response (DNL) and percentage of nonlinear site response (PNL) were 
computed using the difference between the strong motion of the mainshock and weak aftershocks as the 
reference for linear site response. Then, the K-means clustering algorithm was incorporated in the identification 
of nonlinear site response using the DNL, PNL, strength of ground motion (PGA) and site condition (VS20 or VS30) 
as explanatory variables. After careful multicollinearity diagnosis and confirmation of the optimum clustering 
number, we successfully classified the stations into two clusters with nonlinear and linear site responses. Overall, 
the clustering results were found in good agreement with the classification results based on empirical thresholds 
of several nonlinear indicators. For the stations identified with nonlinear site response, the reduction of 
amplification and frequency shift could be observed from the spectral ratio curves regarding the ground motions 
in the mainshock and the reference weak aftershocks, demonstrating typical nonlinearity response characteris-
tics. Furthermore, a comprehensive indicator of nonlinear site response occurrence probability (NLscore) was 
obtained from a linear weighted combination of the normalized variables (PGA, VS30/VS20, DNL and PNL). The 
NLscore ranking of the top several stations was found consistent with the clustering identification results, irre-
spective of the choice of combination scheme. It was demonstrated that the performance of clustering algorithm 
in this application was satisfactory and that the identification results were convincing and robust. This work 
provides an enlightening example of using state-of-art machine learning technique to solve the traditional 
earthquake engineering problems.   

1. Introduction 

It is widely recognized that the seismic response characteristics of 
surface soft soil become nonlinear when the soil is struck by strong 
motion. Real strong-motion records of the 1994 Northridge Earthquake 
in the USA provide direct evidence of nonlinear site response [1-3], 
where the amplitude of near-field ground motions was observed to be 
lower than prediction value of attenuation relationship or simulation 

results for “soft” soil condition. Further similar evidence had been 
observed for many subsequent strong earthquake events [4-6]. 
Laboratory-based soil dynamics tests have indicated that this phenom-
enon is attributed to the rise of the damping factors and the reduction in 
shear rigidity regarding the large strain level under strong input ground 
motions [7, 8]. Evidence from numerous earthquakes has shown that the 
nonlinear behavior of soil could be indicated and evaluated using 
comparative spectral ratio curves computed from weak and strong 
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motions [9-14]. When the ground motion input exceeds a certain 
threshold, the shift of resonant frequencies toward lower values and a 
reduction in the associated amplification would be clearly observed in 
the spectral ratio curves. 

Vertical arrays of accelerometers are the primary choice of data 
source for the estimation of seismic site response. This is because their 
use both avoids the difficulty of selecting reference rock sites and pro-
vides more stable spectral ratio curves. On the other hand, it is 
confirmed that the spectral ratios of horizontal-to-vertical (H/V) surface 
ground motion could be used as an alternative for sites without vertical 
borehole measurements or in areas where it might be difficult to 
establish usable reference sites [9,10]. To quantify the difference be-
tween linear and nonlinear site responses, some indicators have been 
proposed for the evaluation of the degree of nonlinearity. The parame-
ters include the degree of nonlinearity (DNL) [9,10] and percentage of 
nonlinearity (PNL) [12]. We explain the above parameters in Section 3 
of this manuscript. 

Although both the DNL and PNL parameters have been used 
commonly in practice, it is difficult to distinguish definitively between 
sites with and without soil nonlinearity based only on their values. This 
is partly because the empirical thresholds of the DNL and the PNL are 
subjective and change with specific earthquake events and site condi-
tions. In addition, identification results based on empirical fixed 
thresholds of DNL and PNL are not always the same given the variability 
of the spectral ratio curves. Moreover, to obtain reliable classification 
results, both the ground motion input level and the site condition need to 
be considered. However, the corresponding classification thresholds for 
both the ground motion strength and the soil condition are also variable 
and unfixed. In practice, the assessment of nonlinear site response de-
pends on existing knowledge and experience. Therefore, a manual 
classification process would require considerable time, especially when 
the number of records is large. 

In view of these shortcomings, this study proposes to incorporate the 
clustering algorithm of machine learning techniques in the identifica-
tion of seismic nonlinear site response. Clustering analysis is one of the 
principal tools of exploratory data mining. It is actually not a single 
specific algorithm but an unsupervised machine learning process that 
classifies unlabeled similar objects into the same group or cluster [15]. 
There are many clustering applications available for use in the field of 
seismology and earthquake engineering. For example, Chen [16] 
developed an approach to pick seismic wave arrival times using fuzzy 
clustering, which is based on the idea that the amplitudes of the seismic 

data before and after arrival can be treated as separate clusters. Riahi 
and Gerstoft [17] used a graphical clustering method to locate earth-
quake sources within a dense sensor array. The clustering analysis is 
usually considered as a useful tool for solving multi-objective optimi-
zation (MP) problems [18] that require simultaneous optimization of 
more than one objective function. Stations with nonlinear site response 
often have similar recorded large ground motions, similar soft site 
conditions and similar features in their spectral ratio curves that could 
be measured using the DNL or the PNL. These inherent similarities 
provide solid foundations for the use of clustering analysis in classifying 
stations with and without nonlinear site response, which could be 
regarded as a typical MP problem that needs to consider all these factors 
as variables to obtain comprehensive results. 

In this study, the September 6, 2018 Mw6.6 Hokkaido Iburi-Tobu 
earthquake [19,20] was taken as an example for analysis of nonlinear 
seismic site response. Surface/borehole and horizontal/vertical (H/V) 
spectral ratios were calculated using strong ground motion data recor-
ded by the KiK-net vertical array and K-NET stations, respectively. Then, 
the DNL and PNL values were computed using weak motions recorded 
during aftershocks as the reference for linear site response. Finally, the 
K-means clustering algorithm was introduced and applied in the 
nonlinear site response identification by considering the DNL, PNL, 
strength of ground motion (PGA) and site condition (VS30 or VS20) as 
clustering variables. 

2. Strong ground motion data and data processing 

The September 6, 2018 Mw6.6 (MJMA, Japan Meteorological Agency 
(JMA) magnitude, 6.7) Hokkaido Iburi-Tobu earthquake occurred 
following a shallow reverse rupture (according to the preliminary focal 
mechanism solution provided by the USGS, https://earthquake.usgs. 
gov). The hypocenter depth of the earthquake was located 37.0 km 
beneath the island of Hokkaido which were determined by JMA 
(https://www.jma.go.jp/jma/indexe.html). The maximum registered 
intensity is 7.0 by JMA. This earthquake reportedly killed 41 persons, 
including 36 dead by nearly 6000 landslides [19]. According to research 
in Ref. [20], the observed peak ground accelerations (PGAs) and peak 
ground velocities (PGVs) generally followed the median GMPE values at 
fault distances � 50 km. However, at smaller distances, the PGA and 
PGV prediction equations significantly underestimated the observations, 
which may be induced by nonlinearity site response in the near-field 
region. Ref [20] proposed an ad hoc equation to correct the nonlinear 

Fig. 1. A surface PGA contour map of the studied region regarding KiK-net and K-net stations were shown in Fig(a) and Fig(c) respectively. Locations of the studied 
KiK-net and K-NET stations and mainshock epicenter of the 2018 Hokkaido Iburi-Tobu earthquake were shown in Fig(b); the preliminary focal mechanism solution 
provided by USGS is also shown. 
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site amplification in predicting horizontal PGVs with respect to one of 
the most widely used attenuation models in Japan. 

Overall, 208 KiK-net and 268 K-NET stations were triggered by the 
mainshock. We used recordings from the stations with epicenter dis-
tance less than 200 km to investigate the possible nonlinear seismic site 
response, as shown in Fig. 1. Weak motions were selected from 29 

aftershocks for computation of reference linear site responses based on 
the following two criteria. (1) To remove recordings potentially affected 
by soil nonlinearity, the geometric mean of the surface PGA of two 
horizontal components should be less than 30 cm/s2 (2) At least five 
records matching criterion (1) must be recorded at each station to ensure 
a reasonably low level of scattering of the spectral ratio curves. 
Accordingly, 39 KiK-net stations and 56 K-NET stations were selected for 
the evaluation of their nonlinear site response during the mainshock. 
The characteristics of nonlinear site response at station IBUH03 would 
be detailed analyzed in Reference [20] which would not be further 
discussed in this paper. It is worth noted that the seismic site response of 
aftershock weak motions may have been affected by the strong motions 
during the mainshock and that may have resulted in underestimation of 
the degree of nonlinearity. But using the aftershock has the advantage of 
limiting the incident angles nearly similar between the mainshock and 
aftershocks, thus letting the discrepancies mainly relate to the strength 
of ground motions. Thus, we think that our results should be applicable 
to the classification of sites for nonlinearity irrespective of the reference 
motions such as those during pre-shocks or aftershocks of reasonably 
weak-motions. 

The locations of the studied stations and a PGA contour map are 
shown in Fig. 1. The station code, PGA (recorded at surface and bore-
hole), and VS30 (VS20 was used for K-NET) of each station were listed in 
Table 1 and Table 2 for the KiK-net and K-NET stations, respectively. The 
surface PGAs correlating with the epicenter distance of the selected re-
cords, shown in Fig. 2(a) and (b), clearly illustrate that the selected re-
cords have uniform distribution within the range of 200 km and that half 
of them are higher than 50 gal. Histograms of VS30 and VS20 values with 
respect to KiK-net sites and K-NET sites are shown in Fig. 2(c) and (d), 
respectively. For some K-NET stations with shallow shear-wave velocity 
profiles <20 m, the value of VS20 was computed using an extrapolation 

Table 1 
The Pearson correlation coefficients and VIF values for the clustering variables 
regarding K-NET observations.   

Surface-PGA DNL PNL VS20 VIF 

Surface-PGA 1.00 0.80 0.85 -0.14 4.8 
DNL 0.80 1.00 0.74 -0.11 3.0 
PNL 0.85 0.74 1.00 -0.18 3.8 
VS20 -0.14 -0.11 -0.18 1.00 1.0  

Table 2 
Same as Table 3 but for KiK-net observations.   

case A 

Surface-PGA DNL PNL VS30 VIF 

Surface-PGA 1.00 0.74 0.95 -0.19 10.3 
DNL 0.74 1.00 0.80 -0.37 3.3 
PNL 0.95 0.80 1.00 -0.20 13.3 
VS30 -0.19 -0.37 -0.20 1.00 1.2  

case B 
Borehole-PGA DNL PNL VS30 VIF 

Borehole-PGA 1.00 0.76 0.87 -0.15 4.5 
DNL 0.76 1.00 0.80 -0.37 3.4 
PNL 0.87 0.80 1.00 -0.20 5.2 
VS30 -0.15 -0.37 -0.20 1.00 1.2  

Fig. 2. Surface PGA distribution with epicenter distance for the selected stations: (a) KiK-net and (b) K-NET. Histograms of (c) VS30 values of KiK-net stations and (d) 
VS20 values of K-NET stations. 
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method proposed by Wang and Wang [22]. Two-thirds of stations 
exhibit VS30 and VS20 values smaller than 500 and 400 m/s, respectively. 
Potential nonlinear site responses might be observed in this region 
because of the reasonably strong ground motions recorded and the soft 
surface soil. 

A Butterworth filter with a bandwidth of 0.2–20.0 Hz was applied to 
each record. The Fourier amplitude spectrum for each component was 
calculated using the fast Fourier transform method, and a Pazen window 
with width of 0.5 Hz was used to smooth the spectrum. The spectral ratio 
of the horizontal component at the ground surface to that of the bore-
hole (surface/borehole) was computed for the KiK-net sites. The H/V 
spectral ratios at the ground surface were utilized for the K-NET sites 
because of the lack of borehole measurements. The horizontal amplitude 
spectra were derived from the square root of the products of the two 
horizontal components. The linear site response reference curve was 
calculated as the average of the spectral ratio curves derived from all the 
selected weak ground motions. Using the S-wave portion of the record 
need to hand pick the onset of S-waves and determine the S-wave time 
window which depends on the users’ experience and practice. To avoid 
signal-processing bias, we used the entire duration of the seismic record 
in the computation of the spectral ratio curves rather than just the S- 
wave portion like in Ref. [20]. The nonlinearity indicator results were 
overall similar between using S-wave portion and the entire duration of 
recordings, which would have limited impact on our following clus-
tering results but significantly improve the efficiency. 

3. Quantification of nonlinear site response 

3.1. Nonlinear site response indicator parameters 

The DNL parameter used in this study was proposed in Ref. [9,14], as 
shown in Eq. (1): 

DNL¼
XN2

i¼N1

�
�
�
�log

�
Rstrong

�
i
�

RweakðiÞ

���
�
�
�

�

fiþ1 � fi

�

(1)  

where Rstrong is the spectral ratio value for strong ground motion in the 
mainshock, Rweak is the average spectral ratio value computed using the 
weak aftershock records, fi is the ith frequency (calculated in the fre-
quency range 0.5–20 Hz), N1 is the first index of the frequency above 
0.5 Hz, and N2 is the final index of the frequency 20.0 Hz. 

To account for the variability of the linear reference site response 
curve, the PNL indicator was proposed by Ref. [12]: 
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A

PN2

i¼N1

jRweakðiÞjlog10
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�% (3)  

where R�weakðiÞ and RþweakðiÞ represent the values of the average linear 
spectral ratio curve minus and plus one standard deviation at the ith 
frequency fi, respectively; N1 and N2 are the same indices defined for Eq. 
(1). The value obtained from Eq. (2) is normalized by the linear site 
response spectral ratio curve to obtain an absolute estimation of the 
nonlinear soil behavior independent of the linear site response ampli-
tude as shown in Eq. (3). 

3.2. DNL and PNL computation results 

The DNL and PNL were calculated following the method explained 
above. Although there is an apparent positive correlation relationship 
between the DNL, PNL and surface PGA, as illustrated in Fig. 3, the data 
are clearly scattered because of the variability of the spectral ratio 
curves. Moreover, site condition might also have an impact on the DNL 
and PNL values. Sites such as SRCH10 and HKD123 that have relatively 
high PGA and low DNL values show higher values of VS30 or VS20, as 
indicated in Tables A1 and A2, respectively. 

The contour maps of DNL and PNL values, plotted in Fig. 4 using 
hermit interpolation, indicate the general spatial region of the occur-
rence of nonlinear site response. The station ID number in Table A1 and 
A2 were labeled aside the corresponding stations. It is difficult to 
ascertain the exact region or stations with nonlinear site response solely 
by the empirical threshold of the DNL or the PNL. The job of classifi-
cation becomes much more complex if we consider the difference be-
tween the K-NET and KiK-net identification results depicted in Fig. 4. If 
we were to manually compare and check the spectral ratio curves of 
each station, it would take considerable time and lead to loss of objec-
tivity in the results. Therefore, the use of the K-means clustering algo-
rithm to derive a comprehensive explanation of the observed data is 
described in the next section. 

Fig. 3. (a) DNL and (b) PNL values versus observed horizontal PGA at the ground surface based on records at KiK-net and K-NET stations.  
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Fig. 4. Contour maps of DNL and PNL values calculated using ground motions recorded at (a) and (b) KiK-net stations and at (c) and (d) K-NET stations during the 
September 6, 2018 Mw6.6 Hokkaido Iburi-Tobu earthquake, Japan. The station ID number in TableA 1 and A2 were labeled aside KiK-net (e) and K-NET stations(f). 
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4. Clustering stations with/without nonlinear site response 

4.1. Clustering analysis and K-means clustering algorithm 

Clustering analysis refers to the process of organizing items into 
groups based on their degree of similarity. The generated clusters 
comprise sets of data that are similar to each other in the same group but 
dissimilar from data in other groups. Clustering analysis categorizes 
unlabeled data based only on the observations themselves. Thus, it is 
regarded as an unsupervised classification procedure, which is the most 
essential characteristic compared with traditional empirical-model- 
based classification procedures. 

K-means clustering is one of the methods used most widely for 
clustering analysis in data mining [23]. The objective of K-means clus-
tering is to partition n observations into k clusters in which each 
observation belongs to the cluster with the nearest mean value, serving 
as a prototype of the cluster. Given a set of observations (x1, x2, …, xn), 

where the n-th observation xn is a d-dimensional real vector with 
d explanatory variables, K-means clustering partitions the n observa-
tions into k sets S ¼ {S1, S2, …, Sk} to minimize the sum of the variance 
(J) as defined in Eq. (4). The term 

PK
k¼1ðjxn � μkj

p
Þ

1
p is the Minkowski 

distance that is used to describe the “difference” between the observa-
tion xn and the k-th clustering centroid point μk. When p is equal to 2, it 
represents the Manhattan distance (or City-block distance) which was 
used in this study [24]. 

J¼
XN

n¼1:::

XK

k¼1:::
ðjxn � μkj

p
Þ

1
p (4) 

The main steps of the procedure are as follows: 

Step 1: k initial “means” are generated randomly within the data 
domain. 
Step 2: The corresponding k clusters are created by associating ob-
servations with the nearest mean. 
Step 3: The centroid of each of the k clusters μk becomes the new 
mean. 
Step 4: Steps 2 and 3 are repeated until the convergence criterion is 
reached, i.e., it reaches the specified maximum number of iterations 
or the centroid of each cluster does not change. 

In our problem, each station is treated as one observation with four 
explanatory variables characterizing nonlinear site response, i.e., 
ground motion intensity (Surface-PGA or Borehole-PGA), soil condition 
(VS30 or VS20), DNL and PNL. The task of the K-means clustering algo-
rithm is to separate the stations into at least two clusters representing 
those with nonlinear site response and those with linear site response. As 
one of the mature clustering analysis tools, the Clustering Toolbox of 
software MATLAB [25] was used in this study to achieve this objective. 

4.2. Multicollinearity diagnosis and standardization of clustering 
variables 

Before employing K-means clustering, multicollinearity diagnosis 
was performed to guarantee there were no linear correlations between 
the explanatory variables [26]; otherwise, one variable could be 

Fig. 5. Clustering number and corresponding Cali�nski–Harabasz index relating 
to K-NET and KiK-net stations. 

Fig. 6. Observation data for (a) KiK-net and (b) K-NET stations represented in 3-dimensional space using the PCA method. Different colors indicate the nonlinearity 
identification results using the K-means algorithm. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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expressed linearly by other variables, and the redundant variables might 
cause unnecessary fluctuation in the clustering results because of a few 
outliers. The variance inflation factor (VIF) is commonly used to esti-
mate the degree of multicollinearity between different variables [27, 
28]. First, a least square linear regression is undertaken in which the ith 
variable vi is represented as a function of all the other explanatory 
variables. The parameter fi is the regression prediction value: 

vi¼ fi þ ε ¼ a1v1 þ a2v2 þ :::ai� 1vi� 1 þ aiþ1viþ1:::þ bþ ε (5)  

where b is a constant parameter and ε is the error term. 
The VIFi of vi is computed as follows: 

VIFi¼
1

1 � Ri
2 (6)  

where Ri is the coefficient of the multiple correlation for Eq. (5), defined 
as Eq. (7). The term v is the mean vi value of the n observed data v ¼
1
n
Pn

j¼1vi;j: 

Fig. 7. Values of DNL, PNL for (a) 39 KiK-net stations and (b) 56 K-NET stations versus the recorded PGA and VS30/VS20. Dots of different color indicate the 
classification results computed using K-means clustering algorithm described in this paper. Dashed lines indicate the empirical classification thresholds of the DNL, 
PNL, Borehole-PGA and Surface-PGA. Shaded area indicates the region where indicator values are larger than the empirical thresholds to define nonlinear site 
response. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

K. Ji et al.                                                                                                                                                                                                                                        



Soil Dynamics and Earthquake Engineering 128 (2020) 105907

8

Fig. 8. Surface-borehole spectral ratio curves for (a) 9 KiK-net stations and (b) 11 K-NET stations that were identified as having nonlinear site response based on the 
K-means clustering algorithm. Shaded area indicates range of the mean plus/minus one standard deviation. 
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Ri ¼ 1 �

Pn

j¼1

�
vi ;j � fi;j

�2

Pn

j¼1

�
vi ;j � vi

�2
(7) 

Significant multicollinearity exists when the VIF value exceeds the 
threshold value of 10.0 [29]. The VIF values and Pearson’s correlation 
coefficients were calculated for the four explanatory variables relating 
to the K-NET and KiK-net observations, as presented in Tables 1 and 2, 
respectively. 

For the K-NET observations (Table .1), the VIF values of the four 
explanatory variables: Surface-PGA, VS20, DNL and PNL are all <4.0, 
indicating negligible multicollinearity and that all four variables could 
be used in clustering analysis. For the KiK-net stations, the VIF values for 
Surface-PGA and PNL are all >10.0. The Pearson’s correlation coeffi-
cient between surface-PGA and PNL is 0.95, which indicates strong 
linear correlation. Therefore, the Surface-PGA was replaced by the 
Borehole-PGA to represent the level of ground motion and new VIF 
values were calculated for Borehole-PGA, DNL, PNL and VS30 and are 
listed in Table 2 as case B. The VIF values indicated no predominant 
multicollinearity (the largest VIF value is 5.2). 

In addition to the diagnosis for multicollinearity, scaling of the 
variables is also an important procedure that should be performed prior 
to K-means clustering. If variables are measured on different scales, the 
effect of variables with small scale might be submerged in the variables 
with larger scale, which might produce misleading results. Significant 
difference exists in the scale of measurement of the PGA, VS30, VS20, DNL 
and PNL values. Therefore, we used the extreme method to obtain 
nondimensional explanatory variables, as shown in Eq. (8), where the 
term vi’ is the nondimensional result of variable vi, and vmax

i and vmin
i are 

the maximum and minimum values, respectively, among the n 
observations: 

vi’¼
vi � vmin

i

vmax
i � vmin

i
(8)  

4.3. Optimum clustering number 

Before performing the K-means clustering analysis, it is necessary to 
determine the optimum number of clusters. As the only prior informa-
tion used in the entire unsupervised clustering analysis process, the 
number of clusters will influence the clustering result substantially. 
There is no standard procedure for computation of the optimum number 
of clusters. The most popular criterion is the F-stopping-rule index of 
Cali�nski and Harabasz [30], which is based on the within-cluster sum of 
squares of differences. It is a measure of the homogeneity level between 
clusters. The larger the value of the Cali�nski–Harabasz index, the more 
significant the differences among the groups and the more 
acceptable the clustering number. Different clustering numbers and the 
corresponding Cali�nski–Harabasz index relating to the K-NET and 
KiK-net stations are illustrated in Fig. 5. It can be seen that two clusters 
have the largest value of the Cali�nski–Harabasz index, indicating that 
two is the optimum clustering number. The results are consistent with 

the problem central to this study, i.e., one cluster groups stations with 
nonlinear site response and the other cluster groups stations with linear 
site response. The K-means clustering analysis was then performed to 
separate the observational data obtained from the KiK-net and K-NET 
stations into two clusters. 

4.4. Clustering result validation 

It is difficult to visualize the classification results because each 
observation element has four explanatory variables that require visu-
alization in four-dimensional space. Therefore, we used principal 
component analysis (PCA) to reduce the dimensions of the observational 
data. PCA is mathematically defined as an orthogonal linear trans-
formation that transforms data into a new coordinate system such that 
the projection of the data comes to lie on the new coordinates (called the 
principal component) [31]. The greatest variance by projection of the 
data on the first coordinate is called the first principal component; the 
second greatest variance on the second coordinate is called the second 
principal component, and so on. The PCA results indicate that three 
components account for >95% of the variance, which could represent 
the original observational data studied here. The original 
four-dimensional observation data for the KiK-net and K-NET stations 
were projected into three-dimensional space, as shown in Fig. 6. The 
classification results using the K-means algorithm are all presented 
visually as two separate clusters, indicating a reasonably satisfactory 
classification result. 

The clustering results were then compared with those based on 
empirical thresholds of widely used nonlinear indicators, e.g., the DNL, 
PNL and PGA (Fig. 7). Noguchi and Sasatani [14] suggested a DNL value 
of 4.0 for the H/V ratio method as the boundary of nonlinear site 
response identification, and this has been used in many subsequent 
studies [13]. Although there is a difference between the surface/bore-
hole and H/V spectral ratios, the DNLSB and DNLHV thresholds are nearly 
equivalent [14]. The empirical threshold values of the PNL and 
Borehole-PGA suggested by R�egnier et al. [12] were 10% and 50 gal, 
respectively, based on a large number of KiK-net data obtained in Japan. 
However, debate continues regarding where within the range of 
100–200 gal the surface-PGA threshold value should be set. Our classi-
fication results were found in good agreement with the threshold value 
of 200 gal suggested by Ren et al. [13], as shown in Fig. 7(b). The cor-
relation between site condition (i.e., VS30 or VS20) and the degree of 
nonlinear site response (i.e., DNL or PNL) is obviously weak, and there is 
no convincing threshold for either VS30 or VS20. It can be observed that 
the sites with nonlinear site response classified by clustering algorithm 
(i.e., cluster A in Fig. 7) are located mostly within the empirical 
nonlinearity region, except for two or three data points near the 
boundary. It proves that clustering results are reasonably convincing 
and robust from the perspective of the distribution of nonlinearity 
indicators. 

The surface-borehole or H/V spectral ratio curves for stations with 
nonlinear site response, according to our clustering results, are shown in 
Fig. 8. The computed spectral ratios using the recordings of the main-
shock, which were amplified at frequencies below the predominant 

Table 3 
Ten different weighed linear combination of the normalized variables.   

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

KiK-net stations w1 0.20 0.20 0.20 0.20 0.30 0.30 0.30 0.40 0.40 0.50 
w2 0.20 0.30 0.40 0.50 0.20 0.30 0.40 0.20 0.30 0.20 
w3 0.50 0.40 0.30 0.20 0.40 0.30 0.20 0.30 0.20 0.20 
w4 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 

K-NET stations w1 0.20 0.20 0.20 0.20 0.30 0.30 0.30 0.40 0.40 0.50 
w2 0.20 0.30 0.40 0.50 0.20 0.30 0.40 0.20 0.30 0.20 
w3 0.50 0.40 0.30 0.20 0.40 0.30 0.20 0.30 0.20 0.20 
w4 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 

“0.20”: bold number means that the first several ranking stations are identical with the clustering recognition results in this paper. 
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frequency and were reduced above it, illustrate typical nonlinear soil 
behavior. For KiK-net stations, the DNL values were between 3.6 (at 
HDKH03) and 5.9 (at HDKH01). All the DNL values were larger than the 
empirical threshold of 4.0 except for the station HDKH03, of which the 
PNL value is 21.8% and reduced predominant frequency could be clearly 
observed. The PNL values are between 11.3% and 48.4%. The pre-
dominant frequencies of the sites were reduced by approximately 9% (at 
SRCH09) to 78% (at IBUH01). It can be seen that a systematic decrease 
of the peak frequencies is associated with a decrease of their amplitude. 
For K-NET stations, the DNL values were between 3.6 (at HKD131) and 
11.3 (at HKD126). For HKD131, PNL is 14.2% and the predominant 

frequency reduced from 10.0 Hz to 7.69 Hz. The PNL values are between 
12.1% and 47.5%. The predominant frequencies of the K-NET sites were 
reduced by approximately 17% (at HKD184) to 83% (at HKD105). It 
indicates that the results of the identification of nonlinear site response 
using the clustering method are reasonable and accurate. The entire 
clustering identification process, which is completely automatic and 
efficient without any manual intervention, is demonstrated to produce 
satisfactory and objective results, as shown in Figs. 7 and 8. 

It is worth noting that accurate identification of predominant fre-
quency of spectral ratio curves could not be easily accomplished by 
programs especially when multiple peaks existed. In addition, the 

Fig. 9. Ranking of NLscore indicating the possibility of occurrence of nonlinear site response for (a) KiK-net stations and (c) K-NET stations for 10 schemes of different 
linear combinations of the normalized variables. Each cell represents one station with different colors representing the stations listed in Tables A1 and A2. The 
ranking results are compared with the clustering results obtained in this study for: (b) KiK-net stations and (d) K-NET stations. (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of this article.) 
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predominant frequency shift is part of change in spectral ratio curve 
shape, which could be described by the DNL and PNL. Larger DNL and 
PNL values mean generally larger reduction of amplitude and larger 
shift of frequencies. The purpose we apply the clustering method is to 
minimize the impact of subjective judgment and improve classification 
efficiency. Therefore it is suggested that the frequency shift indicators 
(like FNL [12], Rfp [13]) are not first choices of clustering variables, but 
could be applied in checking or further analysis of the classification 
results. 

5. Ranking of nonlinear-site-response occurrence probability 

To illustrate the nonlinear site response occurrence probability 
intuitively, the PGA, DNL, PNL and site condition parameters were lin-
early combined with different weights to calculate a comprehensive 
ranking score. As shown in Fig. 7, the PGA, DNL and PNL values have 
strong positive correlation, whereas site condition has weak negative 
correlation with them. Therefore, it is mandatory that the corresponding 
weights for VS30 or VS20 be smaller than for the other nonlinearity in-
dicator variables. Equation (9) defines the ranking score of nonlinear 
site response (NLscore), which reflects the possibility of the occurrence of 
nonlinear site response. The larger the value of NLscore the more likely 
the occurrence of nonlinear site response. The variables were normal-
ized using the extreme method, as in Eq. (8). Ten possible schemes of 
linear combinations of weights that satisfy Eq. (9) are presented in 
Table 3. 
�

NLscore� KiKnet ¼ w1BoreholePGAþ w2DNLþ w3PNL � w4VS30
NLscore� Knet ¼ w1SurfacePGAþ w2DNLþ w3PNL � w4VS20

w1 þ w2 þ w3 þ w4 ¼ 1;

w1;w2;w3;w4 > 0;

w1;w2;w3 > w4

(9) 

The KiK-net and K-NET stations were ranked based on their NLscore 
value based on different weight combinations of the variables, as shown 
in Fig. 9. The station with largest NLscore value was ranked as first and 
the station with the smallest value was ranked last. For illustration 
purposes, we used cells with different colors to represent the stations 
listed in Table A1 and A2. For the KiK-net stations, it can be seen that the 

top nine stations are identical with the results of Cluster A (nonlinear site 
response), except for the M4 and M10 schemes (Fig. 9). The ranking 
difference among the other stations is also reasonably close. The same 
tendency can be observed for the K-NET stations. The consistency be-
tween the ranking and clustering recognition results indicates that the 
clustering identification results are robust and reliable. Considering the 
small difference within the ranking results among the different 
weighting schemes, we used the M6 combination scheme to compute 
NLscore, i.e., w1, w2, w3 and w4 is equal to 0.3, 0.3, 0.3 and 0.1, respec-
tively. The NLscore computation results of the stations are listed in 
Tables A1 and A2. 

The corresponding contour maps of the NLscore for KiK-net and K- 
net stations were compared in Fig. 10. Based on the result of NLscore 
(Fig. 9) and cluster analysis, the stations with NLscore value larger than 
0.4 in Hokkaido earthquake would be classified as nonlinearity ones for 
both KiK-net and K-NET stations. The identified site nonlinearity region 
shape (indicated with contour line of NLscore ¼ 4.0) is basically consis-
tent regarding the contour map of KiK-net and K-NET stations. The 
stations for both arrays with identified nonlinearity site responses is 
observed located in the same region except for HKD130 and IBUH05. 
The DNL value of IBUH05 and HKD130 is 4.2 and 2.8 respectively, 
which is near the empirical nonlinearity boundary. The IBUH05 show 
slight site nonlinearity as shown in Fig. 8 while HKD130 is not classified 
into nonlinearity according to the observation of the spectral ratio 
curves. It is indicated that although the clustering algorithm could 
efficiently classify the nonlinearity response of stations in the first step, 
the stations located near the classification boundary still should be of 
special concern for further analysis. The results given by clustering al-
gorithm are reference rather than the final conclusion of the nonline-
arity site response which is complex and influenced by many factors. 

6. Conclusions 

This study was the first to incorporate the clustering algorithm of the 
machine learning technique to address the problem of classification of 
nonlinear seismic site response. We used the data from the 2018 Mw6.6 
Hokkaido Iburi-Tobu earthquake as a case study. 

Fig. 10. The contour maps of the NLscore for studied (a) KiK-net stations and (b) K-NET stations. The stations with nonlinear site response are indicated with green 
triangles. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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We calculated the surface/borehole and horizontal/vertical (H/V) 
spectral ratios using strong ground motion data recorded at KiK-net 
vertical array and K-NET stations. The degree of nonlinear site 
response (DNL) and the percentage of nonlinear site response (PNL) 
were then computed respectively based on the difference between the 
strong motion in the mainshock and ground motion of the weak after-
shocks as their linear site response reference. Using the values of DNL, 
PNL, PGA and VS30 (VS20) as clustering variables, the K-means clustering 
algorithm was incorporated in the nonlinear site response identification 
process. Multicollinearity diagnosis was applied to guarantee the 
explanatory variables were not correlated linearly. After confirmation of 
the optimum clustering number, we grouped the stations into two 
clusters representing observations with nonlinear site response and 
those with linear site response. 

To validate the clustering identification results, we adopted different 
methods to evaluate them from different aspects. First, principal 
component analysis (PCA) was performed to illustrate the clustering 
results intuitively by reducing the number of dimensions of the data. 
Following which the values of the DNL, PNL, PGA and VS30 (VS20) were 
presented visually in two separate clusters. The clustering classification 
results for the KiK-net and K-NET stations were found consistent with 
results indicated based on empirical nonlinearity thresholds proposed in 
other studies. For the stations identified with nonlinear site response, an 
obvious reduction of amplification and shift of frequency could be 
observed between the mainshock and the reference linear spectral ratio 
curves, which is the most common characteristics of nonlinear site 
response. Finally, the NLscore of each station, indicating the occurrence 
probability of nonlinear site response, was calculated using all possible 
linear weighted combinations of the four normalized explanatory vari-
ables. The top ranking stations with high nonlinearity occurrence 
probability were found consistent with the clustering nonlinearity 
recognition results. All validation work proved that the unsupervised 
clustering method proposed in this study was efficient in obtaining 
convincing and robust results. 

This study presented an interesting example of how problems in 
earthquake engineering could be dealt with using state-of-the-art ma-
chine learning techniques. Using classical seismology techniques with 
machine learning algorithms in a hybrid approach, it is possible that we 
could extract novel insights directly from the data and solve further 
problems in the field of earthquake engineering. 

Data and resources 

The strong-motion waveform records used in this study were ob-
tained from the National Research Institute for Earth Science and 
Disaster Resilience (NIED) in Japan. The raw K-NET and KiK-net data 
were downloaded from the websites at: http://www.kyoshin.bosai.go. 
jp/, last accessed in Feb.2019. The earthquake catalog data were pro-
vided by Japan Meteorological Agency (JMA) at: https://www.jma.go. 
jp/jma/indexe.html. 
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APPENDIX 

Table A1 
Information of the selected 39 KiK-net strong-motion stations and the values of nonlinear site response indicator (DNL and PNL).  

No. Station Code Epicenter Dis. (km) PGA(gal) VS30(m/s) DNL PNL Nonlinearity identification result NLscore 

Borehole Surface 

1 AOMH01 158 10.8 44.2 302 2.3 2.9 L 0.18 
2 AOMH03 183 6.5 12.9 654 1.1 2.0 L 0.05 
3 AOMH06 200 5.1 34.3 434 1.3 3.1 L 0.10 
4 HDKH01 19 108.4 584.1 368 5.9 37.5 NL 0.76 
5 HDKH03 31 36.1 312.8 341 3.6 21.8 NL 0.41 
6 HDKH04 21 138.5 389.1 235 5.4 25.4 NL 0.70 
7 HDKH05 46 22.5 58.6 766 2.0 5.0 L 0.14 
8 HDKH07 98 9.7 33.4 459 1.3 2.4 L 0.10 
9 HYMH01 168 4.9 10.8 395 1.2 4.0 L 0.10 
10 HYMH02 160 10.1 25.8 498 1.1 2.9 L 0.08 
11 IBUH01 24 218.7 1105.5 307 5.7 48.4 NL 0.98 
12 IBUH02 22 102.2 485.8 542 4.9 32.7 NL 0.63 
13 IBUH05 55 95.0 207.4 379 4.2 11.3 NL 0.46 
14 IBUH06 88 46.0 238.4 304 5.4 14.5 NL 0.50 
15 IBUH07 77 61.8 208.9 259 3.5 7.8 L 0.36 
16 IKRH01 86 34.5 137.3 405 1.4 5.4 L 0.16 
17 IKRH03 36 125.0 180.6 326 4.7 15.9 NL 0.57 
18 KKWH08 66 9.0 56.5 311 2.8 11.2 L 0.26 
19 KKWH12 102 6.3 10.7 771 1.9 4.7 L 0.11 

(continued on next page) 
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Table A1 (continued ) 

No. Station Code Epicenter Dis. (km) PGA(gal) VS30(m/s) DNL PNL Nonlinearity identification result NLscore 

Borehole Surface 

20 KKWH13 96 10.5 36.7 356 2.4 4.8 L 0.19 
21 KKWH14 87 9.9 21.8 538 3.5 5.9 L 0.25 
22 KSRH01 188 7.0 19.4 215 4.4 7.0 L 0.34 
23 KSRH02 179 7.5 23.1 219 3.2 5.8 L 0.26 
24 KSRH07 196 5.5 21.7 204 1.9 5.3 L 0.18 
25 KSRH09 165 8.4 31.9 230 2.0 6.2 L 0.19 
26 OSMH01 179 4.4 14.5 239 2.0 4.6 L 0.17 
27 OSMH02 148 25.6 75.3 325 2.6 2.8 L 0.22 
28 SBSH08 84 14.8 106.9 325 3.5 10.7 L 0.31 
29 SBSH09 124 5.1 8.9 719 1.0 2.1 L 0.04 
30 SRCH06 111 16.9 36.6 321 2.0 6.2 L 0.19 
31 SRCH07 60 20.2 92.0 316 2.0 4.0 L 0.18 
32 SRCH08 91 17.5 68.4 347 4.0 10.3 L 0.34 
33 SRCH09 43 109.4 515.2 241 5.4 20.2 NL 0.63 
34 SRCH10 33 55.3 117.6 1027 2.4 7.3 L 0.19 
35 TKCH01 161 4.9 9.8 445 1.2 3.8 L 0.10 
36 TKCH03 133 9.1 26.5 372 3.2 4.7 L 0.24 
37 TKCH04 91 15.4 41.4 446 2.0 7.2 L 0.18 
38 TKCH05 140 6.7 31.8 337 1.5 4.4 L 0.13 
39 TKCH10 104 6.8 10.4 804 1.7 5.1 L 0.09 

“NL” means that the stations were identified with nonlinear site response. 
“L” means that the stations were identified with linear site response.  

Table A2 
Same as Table A1 bur for 56 K-NET strong-motion stations.  

No. Station Code Epicenter Dis. (km) Surface PGA (gal) VS20 (m/s) DNL PNL Nonlinearity identification result NLscore 

1 AOM001 158 26.8 405 1.5 4.0 L 0.06 
2 AOM002 181 22.5 314 1.5 3.1 L 0.07 
3 AOM003 159 55.5 165 1.5 4.3 L 0.12 
4 AOM007 178 26.7 429 2.0 4.1 L 0.10 
5 HKD040 45 71.6 289 3.0 6.5 L 0.26 
6 HKD097 117 37.0 212 1.9 3.6 L 0.14 
7 HKD099 80 60.9 224 2.5 7.6 L 0.22 
8 HKD102 42 86.7 332 2.9 7.0 L 0.25 
9 HKD103 24 617.7 261 5.1 25.9 NL 0.80 
10 HKD104 16 310.5 295 3.1 12.4 NL 0.39 
11 HKD105 25 305.0 315 6.5 33.1 NL 0.82 
12 HKD106 50 157.3 199 1.9 9.2 L 0.22 
13 HKD107 51 52.8 336 2.6 5.9 L 0.20 
14 HKD108 68 115.4 240 2.2 8.0 L 0.21 
15 HKD109 86 42.0 217 1.8 5.4 L 0.13 
16 HKD118 95 63.1 298 1.6 3.3 L 0.10 
17 HKD120 77 149.9 226 1.6 3.6 L 0.16 
18 HKD121 71 116.4 230 2.6 10.3 L 0.27 
19 HKD122 58 88.3 206 2.2 3.4 L 0.19 
20 HKD123 33 111.6 585 2.7 8.1 L 0.19 
21 HKD124 37 446.1 403 6.9 12.1 NL 0.82 
22 HKD125 13 666.9 175 3.9 15.3 NL 0.67 
23 HKD126 15 506.9 129 11.3 18.5 NL 1.38 
24 HKD127 24 952.5 244 9.8 47.5 NL 1.52 
25 HKD128 16 611.4 152 4.9 45.3 NL 0.88 
26 HKD129 33 347.0 370 4.5 16.4 NL 0.56 
27 HKD130 55 161.8 385 2.8 5.6 L 0.25 
28 HKD131 81 307.3 368 3.6 14.2 NL 0.44 
29 HKD132 88 147.9 192 3.0 11.4 L 0.34 
30 HKD134 75 165.0 312 3.7 8.9 L 0.38 
31 HKD135 93 40.4 179 1.7 2.8 L 0.12 
32 HKD138 131 38.6 281 1.8 5.2 L 0.12 
33 HKD139 114 125.3 333 2.3 3.6 L 0.19 
34 HKD140 98 58.4 241 2.1 7.7 L 0.18 
35 HKD142 105 56.8 206 2.1 3.3 L 0.17 
36 HKD144 103 41.7 193 2.0 6.6 L 0.16 
37 HKD145 88 66.1 226 2.3 9.9 L 0.22 
38 HKD146 108 30.9 373 2.0 4.2 L 0.12 
39 HKD151 137 34.4 189 2.6 5.0 L 0.21 
40 HKD154 136 80.9 204 2.6 9.8 L 0.25 
41 HKD155 122 104.7 195 2.0 3.9 L 0.18 
42 HKD156 139 92.1 277 1.6 2.1 L 0.12 
43 HKD157 122 146.3 334 2.5 6.8 L 0.23 
44 HKD158 119 108.7 113 2.1 8.4 L 0.23 
45 HKD159 137 98.5 180 2.5 9.5 L 0.26 

(continued on next page) 
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Table A2 (continued ) 

No. Station Code Epicenter Dis. (km) Surface PGA (gal) VS20 (m/s) DNL PNL Nonlinearity identification result NLscore 

46 HKD169 159 37.7 437 1.9 5.8 L 0.10 
47 HKD175 112 43.1 398 2.2 3.9 L 0.14 
48 HKD176 98 99.8 289 1.9 1.0 L 0.13 
49 HKD177 90 60.3 374 2.0 2.3 L 0.12 
50 HKD178 77 93.7 179 3.7 11.4 L 0.38 
51 HKD179 70 94.4 169 2.4 6.8 L 0.24 
52 HKD180 72 148.1 110 3.8 9.3 L 0.42 
53 HKD181 59 242.8 178 3.5 9.7 L 0.42 
54 HKD182 49 187.6 258 3.1 8.1 L 0.34 
55 HKD183 74 93.7 444 2.3 1.5 L 0.15 
56 HKD184 34 336.5 242 4.4 16.4 NL 0.57 

“NL” means that the stations were identified with nonlinear site response. 
“L” means that the stations were identified with linear site response. 
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