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Abstract
Classification of local soil conditions is important for the interpretation of struc-
tural seismic damage, which also plays a vital role in site-specific seismic hazard
analyses. In this study, we propose to classify sites as an image recognition
task using a deep convolutional neural network (DCNN)-based technique. We
design the input image as a combination of the topographic slope and the mean
horizontal-to-vertical spectral ratio (HVSR) of earthquake recordings. A DCNN
model with five convolutional layers is trained using 1649 sites in Japan. The
recall rates for site classes C, D, and E using our DCNN classifier for Japanese
sites are 82%, 70%, and 60%, respectively. When compared with existing site clas-
sification schemes relying on predefined standard HVSR curves, our proposed
method achieves the highest total accuracy rate (between 73% and 75%). The gen-
erality and applicability of our trained classifier are further validated using sites
in Europe with a total accuracy between 64% and 66%. The proposed data-driven
approach could be extended to other types of site amplification functions in the
future.
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1 INTRODUCTION

Average shear-wave velocity down to 30mdepth (VS30) is widely utilized in soil condition classification, for example, in the
National Earthquake Hazard Reduction Program (NEHRP) and EuroCode8 (EC8). However, due to time and budgetary
constraints, site classification using measured VS30 is not always feasible, especially for small projects (like family houses
and small condominiums) or temporary strong-motion stations.1
Considering the limitations ofVS30-based site classification,many (e.g., ref. 2–4) used other proxies which are correlated

with VS30, for example, geological or topographic parameters which can be readily extracted from digital elevationmodels
available on a global scale. Another popular method in site classification is the use of horizontal-to-vertical spectral ratio
(HVSR) of seismic recordings or ambient noise data.5 TheHVSRapproach does not need a nearby outcrop or borehole rock
site as reference, with the assumption that the site amplification of vertical component of ground motions is negligible.
This method is widely applied for site classification in a variety of countries, including Japan, Italy, Iran, and China (e.g.,
ref. 6–10).
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It is shown by many that VS30 alone cannot describe the site amplification over the whole frequency range of engineer-
ing interest (e.g., ref. 1, 11). HVSR curves carry much more site-specific features of site response.12 Several approaches
were thus proposed to utilize the whole HVSR curve, rather than just its peak parameters, in site classification. Zhao
et al.6 suggested to classify sites according to the degree of absolute similarity between reference HVSR curves and the
target curve. Ghasemi et al.9 proposed using Spearman’s correlation coefficient to evaluate the relative similarity between
HVSR curves. To improve the classification performance, Yaghmaei-Sabegh and Tsang13 applied artificial neural networks
(ANN) to extract the shape feature of HVSR curves, and the results were validated using several earthquakes in Iran and
Taiwan.13–15 The general regression neural network (GRNN) approach was further developed by Ji et al.16 for sites in
China.
However, in these ANN or GRNN methods, reference HVSR curves or patterns are required. The reference curves are

usually constructed by averaging the HSVR curves of sites within the same class. Because between-site variability in seis-
mic site responses is not negligible,17 a significant portion of site-specific information is lost in the averaging operation.
The efficacy of the empirical HVSR-based classification approach is heavily dependent on the reference curves. Further-
more, the specific site classification criteria vary across regions, and the reference HVSR curves and classification scheme
should ideally be tailored for each target region (e.g., ref. 18).
To tackle the limitation of previous site classification methods, we apply image recognition techniques to capture the

shape characteristic of different HVSR curves without predefined references. The convolutional neural network (CNN) is
designed to deal with multi-dimensional data such as images (e.g., ref. 19, 20). The objective of the convolution operation
is to extract high-level features such as edges, from the input image. Through the use of appropriate filters, CNN can
successfully capture the spatial and temporal dependencies in an image. Because of the reduced number of involved
parameters and the reusability of weights, the network could be trained to better understand the sophistication of images.
As one of the widely used deep learning approaches, CNN is typically not limited to a single convolutional layer and is
often referred to as the deep convolutional neural network (DCNN).21
In this work, HSVR curves and topographic slopes are utilized to train DCNN models to classify NEHRP site classes.

To identify NEHRP site classes for sites without VS30 measurements, we train DCNN models using the images of HVSR
curves of earthquake recordings and topographic slopes at 1649 sites in Japan. The performance and robustness of proposed
DCNN models are cross-validated considering different forms of input images and parameters. Then DCNN classifier is
compared with empirical HVSR-based classification methods on the same dataset. The trained DCNN classifier is finally
applied to European sites to test its generality.

2 DATASET

2.1 Training dataset

Because DCNN is a data-driven methodology, it is important to use an open and transparent training dataset so that
others can validate and build on our results. Zhu et al.22,23 constructed a comprehensive open-source site database of
strong-motion stations in Japan. The dataset contains detailed site information for 1045 K-net and 697 KiK-net sites, for
example, average shear-wave velocity to a certain depth, average HVSR curve (over available events), and topographic
slope (from a 30 arc-second digital elevationmodel) for each site. For more details on the site database, we refer interested
readers to the paper by Zhu et al.23
In our study, only sites with intact borehole information andmore than five recordings are selected. After the screening,

1649 sites remain in the database (Figure 1A). KiK-net velocity profiles reach or exceed 30 m, thus their VS30 values are
derived directly from available velocity profiles.23 However, the depths of K-net profiles are less than 30 m, thus their
VS30 values are estimated in this study from shallower velocity properties using the extrapolation method proposed by
Wang and Wang.24 The distribution of VS30 against slope is shown in Figure 1B. The Pearson coefficient between the two
parameters is 0.40, which indicates a moderate correlation.
Based onmeasuredVS30, these 1649 sites are assigned to different classes according to theNEHRP classification scheme,

with 121, 808, 612, and 108 sites in classes A + B, C, D, and E, respectively (Figure 1C). The NEHRP site classes are used as
labels in subsequent model training. The numbers of A+ B and E sites in our database are much smaller than those of the
C and D sites. The imbalance ratio, defined as the ratio of the maximum and minimum sample size of different classes,
is approximately 1:8. Because a deep learning model may learn insufficient features from underrepresented classes,25 we
take this problem into account when evaluating the DCNN classifier’s performance.
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F IGURE 1 A total number of 1649 KiK-net and K-net sites, Japan, selected for model training. (A) Spatial distribution, (B) VS30 versus
topographic slope where ρ represents the Pearson’s correlation coefficient, and (C) Number of sites in different NEHRP site classes.

In previous site classification schemes, HSVR curves with no dominant peak are usually classified with a subjective
threshold or directly excluded.8,16,18 The significant peak of the HVSR curves at such sites is hard to recognize and, as a
result, these sites tend to bemisclassified in practice.7 In thework by Zhu et al.,23 an automaticHVSRpeak picking scheme
was proposed using the amplitude of the peak, height of the isolated peaks, and height/half-width of isolated peaks. After
the exclusion of the HVSRs without predominant peaks, there are 1404 sites left. As illustrated in Figure 2A, A + B, C,
D, and E site classes are assigned to 77, 684, 543, and 100 sites, respectively. The proportion of sites in each class does not
differ significantly after the exclusion. The imbalance ratio is approximately 1:9, which is similar to the imbalance ratio
(1:8) of the 1649 samples. The Pearson coefficient between slope and VS30 for the 1404 sites is 0.43 (Figure 2B), which is
also similar to the value of 0.4 for the original dataset. Rock or stiff soil sites (A + B) tend to have a flat HVSR curve with
no predominant peaks. However, due to the complex soil properties and variability of the site response, approximately
1/10 of the HVSRs of sites in C and D classes also have no significant peaks (Figure 2C). The amplitudes of HVSR curves
are not used as a criterion for identifying the site class A + B because this would remove a large number of sites in classes
C and D. Given that we do not need to compute the reference HVSR curve as a target in the DCNN scheme, the necessity
of excluding HVSR curves with no significant peaks is investigated in this study.

2.2 Test dataset

To test the applicability of the DCNN classifier in a region outside Japan, we select sites in the Pan-European region from
the Engineering Strong Motion database (ESM, ref. 26). We apply the same site selection criteria as used in Japan, that is,
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F IGURE 2 A total number of 1404 KiK-net and K-net training sites, Japan, with significant peaks identified on HVSR curves. (A)
Number of sites in different NEHRP site classes, (B) VS30 versus topographic slope (ρ – Pearson’s correlation coefficient), and (C) individual
HVSR curves with gray lines indicating those without a significant peak.

sites with at least five earthquake recordings and with VS30 measurements. This leads to 217 sites in our testing dataset, as
shown in Figure 3A. We then compute the average HVSR at each selected site following the same procedure as adopted
in Japan. The topographic slope is collected from the ESM database. The Pearson correlation between VS30 and slope
(Figure 3B) is stronger than that for the training data in Japan. The proportion of C and D sites is similar for the training
and testing datasets (Figure 3C). However, in the testing set, there are only seven E sites, resulting in an imbalance ratio
of 1:12. Among the 217 testing sites, only 118 sites have significant peaks on HVSR curves.

3 METHOD

3.1 DCNNmodel architecture

Firstly, we briefly review the basic concepts of the DCNN method. DCNN architecture is typically made of multiple con-
volutional layers, pooling (subsampling) layers, and fully connected layers.21 Traditionally, the first convolutional layer
is used to capture low-level feature information such as edges, colors, and so on. Convolution is used to move the fil-
ter bank across the input, resulting in activation at each receptive field, which combines to form a feature map. The
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F IGURE 3 A total number of 217 ESM sites in Europe selected for model testing. (A) Spatial distribution, (B) VS30 versus topographic
slope (ρ – Pearson’s correlation coefficient), and (C) number of sites in different NEHRP site classes.

convolved features are then reduced in dimensionality by applying “valid padding”, or remain the same using the “same
padding” approach. With added layers, the architecture adapts to the high-level features and has a wholesome under-
standing of the images in the dataset. By mixing many filter banks into a single convolutional layer, the layer can learn to
recognize multiple features in the input, and the resulting feature maps become the input of the next layer. Pooling layers
are inserted after one or more convolutional layers to blend semantically similar features and reduce dimensionality.27
Following the convolutional and pooling layers, the multi-dimensional output is flattened and passed to fully-connected
layers for classification.
Figure 4 depicts the input image samples used in our study. The input is a 64 × 64 pixel image that is comprised of

two parts: mean HVSR curve of the site and its topographic slope. The slope value is normalized using the minimum and
maximum values of the dataset and then represented in the upper left corner of the image by a line segment with a fixed
width (3 pixels) and varying length (1 to 60 pixels), as shown in Figure 4A. Parts of the sample training images for four
NEHRP classes are shown in Figure 4B.
We do not directly use decimated vector of HVSR values at various frequencies and the scalar value of slope as input

for two reasons: (1) In previous study,16 the HVSR curves were used as input for GRNN models. It turns out the results
are sensitive to the location of the predominant peak of curves. For curves without predominant peaks, it will lead to
misleading results. In other words, the characteristics of “flat” curves could not be learned well by GRNN given limited
number of the training samples. (2) Secondly, the single scalar slope value would be easily merged with the HVSR values
at multiple frequencies. It is hard to decide the corresponding weight of the slope value in the input layer comparing with
the HVSR curves. The bottom-up saliency-maps are plotted to detect the interesting points or areas in our input images, as
shown in Figure 5. The saliency-maps are constructed using the algorithm based on natural image statistics as proposed
by Kanan and Cottrell.28 It is called a “bottom-up saliency map” because it does not depend on the specific classification
target and is determined by the sparse visual features of the image itself. The HVSR curves and the slope segments are
both recognized as the interesting features in our input images.
The DCNN model used in this study has five convolutional layers, four max pooling layers, one fully connected layer,

and one output layer that corresponds to four target NEHRP site classes (Figure 6). The first convolutional layer has four



6 JI et al.

F IGURE 4 Input representation. (A) Construction of the 64 × 64 pixel image as input, which consists of HVSR curves and normalized
topographic slope value, and (B) example training images for different NEHRP classes.

F IGURE 5 Samples of input images and their corresponding bottom-up saliency maps. The high and low salience values, indicating the
interesting features in an image, are presented using red and blue colors, respectively.

filters and a single kernel. In the other four convolutional layers, the number of filters is 4, 8, 16, and 32, respectively. The
kernel size of the filter in each convolutional layer is set to 3, the stride step is 2, and the padding type is “same”. Except for
the first one, each convolutional layer is followed by a batch normalization layer.29 After the batch normalization layer, it
is a max pooling layer with a max pooling size and stride of 2, and the padding type is “same”. The final pooling layer is
flattened and then fed to the fully connected layer, generating a depth of 4. The four neurons in the last layer correspond
to four NEHRP site classes: A+ B, C, D, and E, respectively. To avoid possible overfitting and improve generalizability, we
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F IGURE 6 Architecture of the DCNN classification model. The size of the output in each layer is expressed as “height × width × depth”
and is labeled in the figure.

TABLE 1 Four different datasets used for training the DCNN classifier

Case
code

Including HVSR curves
without significant peaks?

Including the
slope index?

Number
of sites

No. 1 Yes No 1649
No. 2 Yes Yes 1649
No. 3 No No 1404
No. 4 No Yes 1404

use dropout operation with a dropout rate of 0.5 before the fully connected layer.30 Furthermore, the rectified linear unit
(ReLU) activation function is applied to each pooling layer and fully connected layer.31 Because a larger batch size usually
results in poorer generalization,29 a batch size of 50with 50 epochs is utilized according to our experiments, which reveals a
tradeoff between efficiency and generalizability. The DCNNmodel is trained using the Deep Learning Toolbox in Matlab
and requires approximately 4 min to train (Intel[R] Core[TM] i7-8550U CPU with 18 GB memory). The corresponding
train/validation example cases and script for the DCNNmodel are made available on Github (see data and resources).

3.2 Training and validation

Before applying the DCNN approach for site classification in different regions, it is vital to validate the classifier’s sta-
bility and robustness. If variability within sample observations is not negligible and the class in the training dataset is
unbalanced, like in our classification problem, we must ensure that the model is not overfitted.25 In this study, we use
five-fold cross validation to evaluate the performance of the trained classifier. The entire dataset is divided into five equal-
sized blocks. The classifier is then trained five times on four blocks before being tested on the fifth block. As illustrated in
Figure 1–3, the number of sites in different site classes is unbalanced in our training and test datasets. There are more sites
in classes C and D than in A + B and E. Therefore, we utilize stratified random sampling to ensure that each training and
validation dataset has roughly the same representation. N-fold cross validation has a benefit over random subsampling in
that the testing sets are distinct (non-overlapping) and can provide an objective evaluation of the trained classifier.
The DCNN model is trained using the stochastic gradient descent with momentum (SGDM) optimizer with an initial

learning rate of 0.01 by optimizing a loss function defined as the cross entropy loss function.32 The training process is
terminated when the loss on the validation set exceeds or equals the previously smallest loss for a predefined number of
times. After approximately 10 to 15 epochs, the accuracy rates on the training and validation datasets are stable, and the
corresponding loss values do not fluctuate.
We design four cases to investigate whether including the HVSR curves without significant peaks is necessary and

whether including the slope index improves classification performance, as shown in Table 1. The DCNN architecture and
hyperparameter settings for these four cases are the same as described in Section 3.1.
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F IGURE 7 The confusion matrices for five-fold cross validation in four different cases in Table 1. (A) case no. 01, (B) case no. 02, (C) case
no. 03, and (D) case no. 04.

More than 70% of the training sites are in class C or D. The success rate of the majority site class (i.e., C and D) may
have a significant impact on the overall site classification accuracy rate. Therefore, we utilize the confusion matrix to
objectively describe the classifier’s performance for each site class. The confusion matrices of the validation folds in each
case (Table 1) are illustrated in Figure 7 where xij indicates the number of class j sites that are recognized as class i. Hence,
diagonal elements are those classified correctly, whereas others are misclassified. The number of correctly classified sites
does not significantly vary between five-folds cross validation, indicating that ourDCNNmodel is relatively stable. Overall,
the DCNN model performs best for C and D sites and does not wrongly assign them to adjacent class A + B or E sites. In
other words, most of the misclassified C and D sites are identified as D and C sites, respectively. This holds true for all the
four studied cases in Table 1. The majority of A + B sites are incorrectly classified as class C. Almost half of the E sites are
misclassified as class D.
To qualify the classification performance, we calculate the precision rate and recall rate for each validation fold. The

precision rate quantifies the proportion of sites that are correctly classified. The recall rate for a certain site class is obtained
by dividing the total number of sites in that class by the number of sites correctly classified. The total number of correct
classifications among all sites is the overall accuracy rate. According to the definitions of precision rate and recall rate,
there is a trade-off between these twometrics. Precision rate is sensitive to class imbalance because it considers the number
of negative samples incorrectly labeled as positive. In contrast, the recall rate is insensitive to the class imbalance because
it only depends on the positive classification results. Because the five-fold cross-validation is utilized, five DCNN models
are trained for each case. Then the average and standard deviation of the precision/recall rate for five-folds are computed
as the qualification metrics (Table 2). The recall rate for class C is around 70% to 80% in four studied cases (Table 2),
which is approximately 10% higher than the corresponding precision rate. For class D, the precision rate and recall rate
are similar, ranging from 65% to 68%. The similarity between recall rate and precision rate indicates that the classification
performance for site class C and D is not significantly influenced by the class imbalance of the dataset. For classes A +

B and E, however, the precision rate is much higher than the recall rate. The results are consistent with the previous
observation that the classification performance for classes C and D is much better than A + B, regardless of the training
subset. When A + B sites are excluded, the total accuracy rate increases from around 68% to 74%.
When the slope index is included in the input image, the mean value of recall rate of class C for case no. 02 increases

by 11% compared with case no. 01 (without slope), and the overall accuracy rate increases by 5%. The largest standard
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TABLE 2 The average and standard deviation of recall rate and precision rate among five trained folds

Case no. 01 Case no. 02 Case no. 03 Case no. 04
NEHRP
site
class

Mean
recall rate
(std.a)

Mean
precision
rate (std.)

Mean
recall
rate (std.)

Mean
precision
rate (std.)

Mean
recall rate
(std.)

Mean
precision
rate (std.)

Mean
recall rate
(std.)

Mean
precision
rate (std.)

A + B 11 (8) 52 (22) 6 (5) 43 (3) 6 (8) 46 (3) 3 (3) 16 (2)
C 72 (16) 59 (22) 83 (5) 69 (3) 80 (4) 68 (3) 79 (3) 70 (2)
D 68 (5) 66 (5) 67 (4) 68 (6) 66 (4) 66 (6) 68 (4) 67 (3)
E 38 (13) 64 (21) 36 (11) 73 (23) 36 (9) 82 (11) 51 (15) 73 (9)
Overall accuracy 64 (5) 69 (3) 67 (2) 68 (1)
Overall accuracy
(without A + B)

69 (4) 74 (4) 71 (2) 73 (1)

astd. refers to the standard deviation of recall/precision rate values of five training folds.

deviation of recall rates in case no. 01 also indicates that the stability of classifier could not be guaranteed. It suggests that
including the slope index could improve classification performancewhen theHVSR curves are not screened by significant
peaks.
For cases no. 03 and 04, in which the HVSR curves without predominant peaks are excluded, the inclusion of the slope

index does not significantly influence the classification results of class C or D, and the overall accuracy rate is also similar
to that in no. 02. For class E, the correspondingmean recall rate increases from 36% to 51% after the slope index is included.
However, since the number of class E sites in the validation fold is small (approximately 20), we are inconclusive about
the impact of including slope on class E sites.
No matter which strategy is utilized, the recall rate for site class A + B is not satisfactory, and the underlying reason

will be discussed in Section 3.3. The comparison shows that implementation of the slope index is necessary when HVSR
curves are not screened by significant peaks. If the HVSR curves with no significant peaks are already excluded, the slope
index is not required in the input image according to Occam’s Razor,33 because the performance would not be improved
significantly.

3.3 DCNN ensemble

As shown in Figure 7 and Table 2, the DCNN classifier has good classification performance for site classes C and D, but
accuracy for A + B and E sites needs to be improved further. It is observed that a large number of wrongly classified A +

B and E sites are assigned to adjacent C and D sites, respectively. In other words, the A + B sites are not identified as D or
E sites, and the E sites are not wrongly identified as A + B and C sites. Therefore, the multi-classification problem could
be converted into a binary classification problem. Two extra classifiers are designed to distinguish A+ B from C sites, and
E from D sites, respectively. After the whole dataset is used to train the DCNN model (called classifier 1 hereafter), the
classified A+ B and C sites are used to train a newDCNNmodel, which is referred to as classifier 2. Then the D and E sites
that are recognized using classifier 1 are utilized to construct classifier 3. This voting-like strategy is illustrated in Figure 8.
It is worth noting that the training dataset is the only difference between these three classifiers. The DCNN architecture
and hyperparameters are the same as described in Section 3.1.
The confusion matrices in Figure 8 show that the number of successfully classified A + B and E sites increases after

applying classifiers 2 and 3. The recall rate for site classes A + B increases from 13.2% to 23.7%, while the recall rate for
site class E increases from 44% to more than 60%. The recall rate for C and D sites is nearly identical, which suggests that
using DCNN ensembles could improve classification performance for A + B and E sites without sacrificing accuracy for
C and D sites.
To investigate the underlying reasons for the difficulty in identifying the A + B and E classes, the HVSR curves at

correctly classified and misclassified sites by classifier 1 are compared in Figure 9. Flat HVSR curves are likely to be
successfully classified as A + B sites by classifier 1, while most of the sites with predominant peaks at high frequency
(around 10 Hz) are recognized as site class C (Figure 9A). This is also the characteristic of many HVSR curves at C sites
(Figure 9B). TheHVSR curves of C sites cover those of A+ B sites (Figure 9C). This explains why the DCNNmodels do not
distinguish A+ B sites from C sites well using only the HVSR curves. Although a number of E sites are wrongly classified
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F IGURE 8 An ensemble of DCNN classifiers designed to distinguish A + B and E sites from C and D sites, respectively. The classifier 1
is the DCNN classifier trained using the whole training set. Classifier 2 and 3 are trained using the classified sites from classifier 1. The
confusion matrices of these three classifiers are also presented.

F IGURE 9 Comparison between HVSR curves of correctly classified sites and misclassified sites by classifier 1 regarding (A) class A + B,
(B) class C, (D) class E, and (E) class D. The HSVR curves of site class A + B and C, and D and E recognized by classifier 1, are shown in (C)
and (F), respectively.

as class D because of the similar curve shapes (Figure 9D,E), the predominant frequencies of site class E (around 1.0 Hz)
tend to be lower than those of site class D (around 3.0 Hz) (Figure 9F). Therefore, a number of HVSR curves of E sites are
not covered by the D sites, which may explain why we have a better classification for E sites than for A + B sites.
The DCNN model has a stable classification performance for C and D sites with recall rates greater than 70%. After

applying an ensemble of classifiers, the recall rate for site class E reaches more than 60%. However, due to data limitations
and similarities between the shapes of HVSR curves of A + B and C sites, A + B sites with a high predominant frequency
are still notwell recognized by the ensembleDCNNclassifier. This ismainly due to the limitation of theVS30-basedNEHRP
site classification criterion used to label the instances. VS30 is only one proxy and cannot capture all the features of the
site amplification over the whole frequency range. Many alternative proxies have been proposed to give more refined site
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F IGURE 10 Reference HVSR curves (A) without normalization, and (B) with normalization, for site class A + B, C, D, and E. The solid
lines represent the mean HVSR curves calculated using 1649 sites, and the dash lines represent those using 1404 sites (exclusion of HVSR
curves without significant peaks).

classification scheme, which includes the shallow impedance information, the overall sedimentary thickness, and other
parameters (e.g., ref. 34, 35). Kotha et al.36 directly classified sites according to the site amplification functions. With a
more reasonable site classification criterion or scheme, the classification performance of the DCNNmodel would be fur-
ther improved. In current common practice, HVSR is generally treated as a supplement to VS30 index rather than as a
replacement. But taking advantage of the available seismic waveforms to explore local site characteristics using empiri-
cal and theoretical approaches is a promising direction with accumulation of observation data. New methods based on
seismicity data are promising due to cheaper sensors and more seismicity data (e.g., more small earthquakes detected by
artificial intelligence techniques).

4 RESULTS

4.1 Comparing with other classification methods

Next, we compare the classification performance of our DCNNmodel with existing empirical classification schemes. The
empirical methods proposed by ref., 6, 9 identifying site classes according to the similarity in the shape of HVSR curves,
are referred to as Zhao06 and Ghasemi09 methods hereafter. Another method is the GRNNmodel developed by Ji et al.16
based on the work of Yaghmaei-Sabegh and Tsang.13
The first step of all thesemethods, including theGRNNmodel, is to derive themeanHVSR curves as targets or reference

patterns for classification. Given that the datasets and site classification criteria used in these studies are not identical, we
recalculate the average mean HVSR curves using our dataset in Japan. The reference HVSR curves are built using HVSR
curves from 1649 and 1404 sites respectively, as shown in Figure 10A. After excluding HVSR curves without significant
peaks, the amplitude of themeanHVSR curve of site classes A+B increases significantly. Thismeans thatmany relatively
flat HVSR curves are left out of the 1404-site dataset. Themean HVSR curves of the other three classes are nearly identical
before and after exclusion. As shown in Figure 10B, if the mean HVSR curves are normalized, the shape difference is not
obvious before and after exclusion, including the site class A + B.
We compare the classification results of existing methods with our DCNN model on the 1649 sites (Figure 11). The

overall accuracy rates for Zhao06 and Ghasemi09 methods are approximately the same, reaching 44% to 45%. They have
a better classification performance for site class A + B and site class E with a recall rate nearly 60% to 80%, while more
than half of sites in class C and D are misclassified. According to Zhao et al.,6 the HVSR curves of rock and hard soil
sites are emphasized at about 7 Hz and have a nearly uniform shape, thus soft soil can be easily identified due to its
high peaks at low frequency. This partially explains the good performance for site classes A + B and E. Since C and D
sites dominate the dataset, the total accuracy rate is relatively low. The total accuracy rate of the GRNN model using
the workflow recommended by Ji et al.16 is 54%, with recall rates of 73%, 44%, 57%, and 78% for site classes A + B, C, D,
and E, respectively. Though the GRNNmodel achieves a higher total accuracy rate than Zhao06 and Ghasemi09, its lead
on C and D sites is rather limited. A large number of C and D sites are still wrongly classified by GRNN as A + B and
E sites.
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F IGURE 11 The confusion matrices regarding classification results on the 1649 sites using (A) Zhao06 method, (B) Ghasemi09 method,
(C) GRNN method using normalized HVSR curves as reference patterns, (D) GRNN method using non-normalized HVSR curves as reference
patterns, (E) DCNN classifier 1, and (F) DCNN ensemble.

Compared with the existing methods on the 1649 sites, the DCNN classifier performs best for site classes C and D. The
recall and precision rates are both nearly 70%, and the overall accuracy rate is 73%. When the DCNN ensemble is utilized,
the recall rates of A + B and E classes increase to 24% and 60%, respectively. The overall accuracy increases from 70% into
72%. The majority of misclassified sites are identified as the adjacent site classes, which outperforms other methods. In
this way, sites can potentially avoid being classified into a category that is completely different from the true category. On
the 1404 sites, of which the HVSR curves without significant peaks are removed, the classification results are similar to
those on the 1649 sites.

4.2 Testing in Europe

In this section, we test the classification performance of the trained DCNN classifiers on the European sites. For the
test dataset of 217 European sites, we choose the classifier that is trained on the 1649 Japanese sites using input images
that include the slope index. After the HVSR curves without significant peaks are excluded from the testing dataset, 118
European sites remain. The classifier trained on the 1404 Japanese sites is used for these 118 sites. The confusion matrices
between classification results using classifier 1 and the ensemble are compared in Figure 12.
For the case of 217 sites, the results indicate that the recall rate of classification results of site class C, D, and E are similar

to the results for the dataset in Japan, reaching approximately 70%. Although the recall rates for E sites are as high as 70%,
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F IGURE 1 2 The confusion matrices regarding classification results of the DCNN classifier 1 and ensemble on testing sites in Europe.
(A,B) Correspond to the dataset of 217 sites whose HVSR curves are not excluded by the predominant peaks. (C,D) Correspond to the dataset
of 118 sites of which the HVSR curves without predominant peaks are excluded.

this is mainly related to the small total number of E sites (i.e., seven). Therefore, we would not expect our classifiers’
recall rate for E sites to be as good as C and D sites. Because the number of E sites is too small, utilizing an ensemble of
classifiers does not show significant improvement compared with using DCNN classifier 1. But using the ensemble still
has merits in practice because we often do not know the proportion of different site classes for a given region a priori. It is
illustrated that the ensembles at least do not adversely affect the classification performance of C andD sites. For the testing
on the 118 sites, no A + B sites are recognized because the flat HVSR curves are removed, leaving only the HVSR curves
with predominant peaks at high frequency. Overall, the constructed DCNN classifier has the same level of classification
accuracy on the testing sites in Europe as on the training sites in Japan. This implies that our DCNNmodel can be applied
to European sites without retraining, suggesting its generality.

5 DISCUSSION

We utilize the Grad-CAM (Gradient-weighted Class Activation Map) to explain our DCNN classification results.37,38 The
Grad-CAM can detect the parts that our trained network focused on to give the corresponding prediction. The Grad-
CAM technique uses the gradients of the classification score concerning the final convolutional feature map. As shown in
Figure 13, the parts of an image with a large value for the Grad-CAMmap are those that significantly impact the network
scores for the identified class.
For the identification of site classes E and D, the Grad-CAMmap shows that the neural network focused on some peaks

of the HVSR curves. No obvious relation is found between the results and specific frequency band. In addition, the slope
segment is not recognized as featuring parts in classification of these two site classes. For site class C, the Grad-CAMmap
shows that the neural network focused on the empty space outlined by the HVSR curves and slope segment. The map
suggests that the neural network used the empty space in the image to detect the site class C. For some samples in site
class A+ B, with relatively flat curves without predominant peaks, the value of Grad-CAMmap is zero, indicating that no
parts of the image are recognized. Site class A + B is not directly classified but is predicted by exclusion of other classes.
This also partially explains why the performance of site classification of A + B is not as good as other site classes.
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F IGURE 13 The Grad-CAMmap for our trained DCNN classifier regarding sample images of different site classes. The image parts
with the highest values are highlighted in red, as they have the greatest impact on the network scores for the predicted class.

Although we use HVSR curves in DCNN in this study, other types of site amplification functions can also be used as
input to the data-driven framework, such as site terms of empirical ground motion model39 and site responses from the
generalized inversion technique.40 As a data-driven approach, the DCNN model can be retrained by replacing the input
images with those of other site amplification curves. In addition, HVSR curves ofmicrotremor recordings could be utilized
as input to retrain the model, which is appealing for cases without earthquake recordings.

6 CONCLUSIONS

In this study, we used deep convolutional neural networks (DCNN) to classify sites into NEHRP classes from images of
earthquake-basedHVSR curves and topographic information.We trained the DCNNmodel on 1649 strong groundmotion
recording sites (instances) in Japan and tested it on 217 sites in Europe.
Using DCNN based classifier for Japanese sites, the recall rates for C, D, and E sites are 82%, 70%, and 60%, respectively.

Three existing HVSR site classification schemes have a better performance for site classes A + B and E with a recall rate
nearly 60% to 80%while more than half of C and D sites are misclassified. The total accuracy rate of DCNN classifier (72%)
is much higher than previous schemes (lower than 55%). When tested on sites in Europe, the DCNN classifier achieves
a recall rate of more than 70% for site classes C, D, and E. The classification performance for E sites needs to be further
validatedwithmore collected data. Another potential advantage of ourDCNNclassifier is that themajority ofmisclassified
sites are assigned to adjacent site classes. In this way, sites can potentially avoid being classified into a category that is far
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different from the true site condition. Sites in class A and Bwith a high predominant frequency could not be distinguished
from those in class C by theDCNNmodel, which holds true for sites in both Japan and Europe. This is because theNEHRP
site classes (classification labels) are based on VS30, which alone cannot sufficiently distinguish different sites.
The proposed DCNN-based site classification scheme is a promising method for characterizing site conditions using

image recognition techniques. It is demonstrated that the trained DCNN classifier can be applied to different regions
without retraining. It is worth noting that, as a data-driven method, the classification accuracy of the DCNNmodel could
be improved with more training data in specific regions. Other types of site amplification functions can also be used
as input to the data-driven framework, such as site-response curves from multi-station-based empirical approaches and
HVSR curves of microtremor recordings.
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