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ABSTRACT
Seismic site classification, which is fundamental for site-specific seismic 
hazard assessment, also plays an important role in accurate interpretation 
of ground motion data. However, detailed borehole information is not 
always available in many countries, e.g., China. Therefore, this study investi
gated application of the generalized regression neural network (GRNN) 
method to seismic site classification using China strong motion stations as 
example case. First, stations from KiK-net in Japan were classified based on 
their borehole information and individually assigned to I, II, III, and IV site 
classes as defined in Chinese seismic code. Then, mean horizontal-to-vertical 
spectral ratio (HVSR) curves for each site class were calculated as reference 
patterns. The overall recall rates for I, II, and III sites could reach 66.60%, 
67.57%, and 68.42%, respectively, regarding use of KiK-net stations. The 
GRNN site classification scheme was validated using borehole information 
of K-NET stations, with recall rates for I and II site classes reaching 68% and 
60%, respectively. Finally, based on HVSR curves calculated using strong 
ground motion data acquired during 2007–2015 in China, the site conditions 
of 167 National Strong Motion Observation Network System stations were 
estimated using the GRNN classification scheme. The results were partially 
validated using borehole information of 73 stations. The similarity between 
the mean HVSR curves and reference pattern curves indicated that the GRNN 
seismic site classification scheme is robust and could produce plausible 
results succinctly.
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1. Introduction

Many post-earthquake investigations have proven that local site effects can have considerable influ
ence on ground motion features and structural dynamic response (e.g., Seed et al. 1988; Tsai and 
Huang 2000; Wood 1908). In many countries, it has been common practice to incorporate site 
classification work in seismic code provisions. The most commonly applied site classification index 
is the average shear wave velocity in the upper 30 m (VS30), as recommended by the National 
Earthquake Hazards Reduction Program (NEHRP) (BSSC, 2003). Moreover, proper use of large 
numbers of ground motion data requires that local site conditions of recording be considered 
comprehensively, e.g., when used in state-of-the-art Next-Generation Attenuation (NGA) ground 
motion models. However, owing to the limited availability of drilling borehole data in many countries, 
e.g., China, application of the VS30 is not always practicable for site classification of strong ground 
motion stations.
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Considering the potential financial or technical constraints in obtaining borehole information, 
various researchers have sought to determine site class using ground motion data. One approach 
popular for evaluating site conditions is the horizontal-to-vertical spectral ratio (HVSR) method using 
either earthquake recordings or ambient seismic noise. The HVSR method can be used to estimate site 
horizontal amplification at different periods supposing that vertical component amplification is 
negligible. The HVSR method does not require a proper rock reference station, which is an advantage 
that has led to its widespread use in site classification of strong ground motion observation networks 
over the world, e.g., Japan, Italy, Iran, and China (Alessandro et al. 2012; Fukushima et al. 2007; 
Ghasemi et al. 2009; Wen et al. 2014; Zhao et al. 2006).

Although the basic concept of HVSR is rational, it is not easy in practice to accurately classify site 
conditions by relying solely on the predominant period of HVSR curves. Some automatic empirical 
schemes have been proposed to settle this issue. For example, Zhao et al. (2006) suggested use of the 
probabilistic distribution difference of H/V spectral ratios of all periods to measure the similarity 
between a reference curve and the HVSR curves to be classified. For a more effective evaluation of the 
degree of similarity of the HVSR shape, Ghasemi et al. (2009) constructed an empirical identification 
index using Spearman’s correlation coefficients. For Chinese seismic code defined site classes, 
a satisfactory success rate could not be simultaneously achieved for each site class using these two 
empirical methods, according to validation results based on borehole information of KiK-net stations 
(Ji, Ren, and Wen 2017). In addition to the varied and complex characteristics of the seismic site 
response, the relatively wide ranges of shear wave velocity and sediment thickness for the II site class 
are the main obstacles in relation to Chinese seismic site classification. In previous work, we proposed 
an empirical site classification scheme that considers many factors that include the amplitude, 
predominant period, and shape similarity of HVSR curves (Ji, Ren, and Wen 2017). Using this 
scheme, the success rates for KiK-net stations in identifying I, II, and III site classes could reach 
63%, 64%, and 58%, respectively. However, the empirical classification scheme is complex and requires 
subjective predefinition of both the boundary of the predominant period and the threshold of the 
amplitude for the I site class, which relies largely on user experience and judgment.

Yaghmaei-Sabegh and Tsang (2011) proposed the use of artificial neural networks (ANNs) for 
seismic site classification with predefined reference HVSR curves regarding different site classes. Using 
this scheme, sites are classified into four types based on the mean reference HVSR curves obtained 
from Iran (Ghasemi et al. 2009) and Japan (Zhao et al. 2006). The proposed approach has been 
validated using data of the 1999 Chi-Chi earthquakes and the 2017 Mw 7.3 Ezgeleh earthquake in Iran 
(Yaghmaei-Sabegh and Rupakhety 2020; Yaghmaei-Sabegh and Tsang 2011). By assigning weights to 
the results of ANN-based site classification scheme and empirical site classification methods (Phung, 
Atkinson, and Lau 2006; Zhao et al. 2006), Yaghmaei-Sabegh and Tsang (2014) estimated the site 
condition of the East-Azerbaijan Province in the northwestern part of Iran. All these studies focused 
on seismic site classification based on recordings from a specific earthquake event or regional 
seismographic network with dense recordings. In this study, we will further develop this approach 
and apply it to national strong ground motion stations in China.

We first established reference patterns using KiK-net stations’ HVSR curves. Then the results were 
validated using borehole information of K-NET stations. After that, the generalized regression neural 
network (GRNN) scheme was applied to China’s National Strong Motion Observation Network 
System (NSMONS) stations using ground motion recordings during 2007–2015.

2. Empirical Reference HVSR Curves

2.1. Site Class Definition in Chinese Seismic Code

Unlike the definitions in the NEHRP, there are four site classes in Chinese seismic code (MHURC, 
2010), which are determined according to two indices: the equivalent shear wave velocity of the 
sediment (Vse) and the thickness of the soil layer (H*). The boundaries for these two parameters are 
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presented in Table 1. The site class was defined according to these two indices both. It should be 
noted that I0 is a subclass of site class I. Generally, H* is defined as the depth above the engineering 
bedrock layer where Vs ≥ 500 m/s. If there exists a soil layer with a value of Vs that is 2.5 times 
greater than that of the overlying soil layer and where the values of Vs of the underlying soil layers 
are all >400 m/s, H* is defined as the depth above this layer. An expression for Vse is defined as 
follows: 

Vse ¼ d0=t (1) 

t ¼
Xn

i¼1
ðdi=VsiÞ (2) 

where d0 refers to the smaller value between H* and 20.0 m. Supposing there are n layers of soil 
according to the drilled borehole information, then di and Vsi represent the thickness and the shear 
wave velocity for the i-th soil layer, respectively.

Engineering bedrock, as defined in Chinese seismic code, has a value of Vs = 500 m/s; however, it is 
softer than the NEHRP-defined rock layer that has a value of Vs = 760 m/s. Additionally, the 
computation depth for Vse is within 20 m, which is shallower than the value of 30 m commonly 
associated with the use of VS30. Owing to the differences in site class definition, the reference mean 
HVSR curves given in previous literature cannot be applied directly to site classification in China. 
Therefore, the first task in this paper was to derive empirical reference HVSR curves that could be 
utilized as classification patterns for GRNN scheme.

2.2. HVSR Curves for KiK-net Stations

The borehole depth of the KiK-net stations is sufficient to reach rock layers where Vs far exceeds 
500 m/s, whereas the maximum borehole depth of K-NET stations is only 20 m. Therefore, the KiK- 
net stations were used for computation of the reference HVSR curves given that the value of H* for soft 
sites such as III and IV sites (see Table 1) is probably >20 m. K-NET stations were used for validation 
of our classification scheme.

Of 664 KiK-net stations with borehole data information, 638 stations were classified according to 
the range of Vse and H* (Table 1). The other 26 stations were not included in this study because their 
corresponding borehole information was incomplete and thus their site class could not be derived 
accurately. Overall, 91, 499, 40, and 8 stations were classified as belonging to the I, II, III, and IV site 
classes, respectively, as illustrated in Fig. 1. Among the 91 class I stations, 25 stations were classified as 
outcrop hard rock site class where the Vs value of the first layer exceeds 500 m/s. The distribution of Vs 
values for these 25 stations is illustrated in Fig. 1 using a boxplot. The IV sites refer to extremely soft 
sites where H* exceeds 80 m, which is unsuitable for installation of strong motion observation stations 
according to Chinese seismic code. In addition, only 8 KiK-net stations were classified as IV sites, 
which is an insufficient number for deriving a mean reference HVSR curve with statistical significance. 
Therefore, the IV site class is not further discussed in this paper.

Table 1. Definition of site classes in Chinese seismic code (GB50011-2010) (Ministry of Housing and Urban-Rural Construction 
of the People’s Republic of China (MHURC) 2010).

Equivalent shear wave velocity 
Vse/(m·s−1)

Thickness of soil layer, H*/m

I0 I II III IV

>800 0
500 < Vse ≤800 0
250< Vse ≤500 <5 ≥5
150< Vse ≤250 <3 3 ≤ H* ≤50 >50
≤150 <3 3 ≤ H* ≤15 15 < H* ≤80 >80
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A comprehensive Open-Source Site Database of Strong-Motion Stations in Japan was recently 
developed by Zhu et al. (2020a), which includes 1045 K-NET and 697 KiK-net site stations. This 
database contains site characterization parameters derived directly from available velocity profiles, 
including average wave velocities, bedrock depths, and velocity contrast. FAS is preferred over pseudo- 
spectral acceleration in detecting the site resonant frequency following the recommendations by Zhu, 
Cotton, and Pilz (2020b). After processing with an acausal Butterworth filter at cutoff frequencies of 
0.1 and 30 Hz, the Fourier amplitude spectrum (FAS) of each recording in the database is calculated 
using the complete waveform. The S-wave is not selected to avoid the possible subjective impact 
caused by picking the S-wave window. The FAS is smoothed using the Konno–Ohmachi window with 
a smoothing coefficient of b = 20 (Konno and Ohmachi 1998). For a given record, the HVSR is 
computed as the geometric mean of the smoothed FAS of each of its two horizontal components 
divided by the smoothed FAS of its vertical component. In many applications, such as using machine 
learning for studies of site effects, it is essential to make the training dataset freely accessible. 
Therefore, all HVSR curves for the KiK-net and K-NET stations were calculated and compiled in 
the comprehensive ready-to-use site database

Before deriving the empirical reference HVSR curves, it is necessary to exclude those stations of 
which the HVSRs are without a “significant peak.” For such sites, the predominant peak of the HVSR 
is difficult to identify and thus can easily be misclassified in practice (Alessandro et al. 2012; 
Fukushima et al. 2007; Ji, Ren, and Wen 2017). In Zhu et al. (2021), an automatic peak-recognition 
scheme was proposed based on the following three selection criteria, as illustrated in Fig. 2a:

(1) Significance: amplitude of peak exceeds a global threshold: max(c1, c2 þ log 10ðHVSRÞ);
(2) Prominence: height of the isolated peaks > c3;
(3) Sharpness: prominence/half-width of isolated peaks > c4.

In Zhu et al. (2021), coefficients c1 and c2 are set as log10(2.2) and log10(1.4). In addition to 
significance criteria, the prominence and sharpness criteria are used to define the clarity of a peak 
relative to its neighboring points. The prominence (height of the isolated peaks) threshold value c3 is 
set to log10(1.8). The sharpness (prominence/half-width of isolated peaks) criterion is used to exclude 
broad peaks that arise owing to lateral variation in soil properties (e.g., Woolery and Street 2002), and 

Figure 1. Site classification results for 638 KiK-net stations according to the range of the equivalent shear wave velocity of the 
sediment (Vse) and the thickness of the soil layer (H*). The right boxplot indicates the distribution of Vs values of I sites where the first 
soil layer has a Vs value of >500 m/s. The I0 sites that have a Vse value of >800 m/s are plotted in the area shaded gray.
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its threshold value is set as c4 = 0.5. It is worth noting that the threshold values are not fixed and that 
other values might also be acceptable. The selection of the threshold values for peak recognition 
depends on user judgment. In our study, we needed only to detect whether significant peaks existed; 
therefore, accurate recognition of peaks in the HVSR curves was not essential for site classification. 
Ultimately, we decided to utilize the default threshold values recommended by Zhu et al. (2021). The 
script of the program for HVSR peak identification is freely accessible in the attachment files of the 
database (Zhu et al. 2020a).

Figure 2. (a) Three criteria for detection of predominant or significant peaks in the HVSR curves (Zhu et al. 2021). The threshold 
values are labeled in the figure. (b)–(d) Individual HVSR curves and the corresponding arithmetic mean curves for the I, II, and III sites 
respectively. The gray lines represent the individual HVSR curves without a significant peak. (e) Distribution of Vse and H* between 
sites with and without significant peaks, which are illustrated using different colors.
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Individual HVSR curves and the corresponding arithmetic mean curves for three sites are illu
strated in Fig. 2b–d. There are sufficient recordings included for derivation of H/V curves of each KiK- 
net station. Therefore, the mean H/V curve of each station is very smooth. For I and II site class, there 
is basically no fluctuation in the reference curves. For III sites, slight fluctuation was observed in the 
period range from 0.1 s to 1.0 s because of the relatively small number of stations. As represented using 
gray lines, the HVSR curves of 31, 57, and 1 station for I, II, and III sites, respectively, were identified as 
without a significant peak. An HVSR curve might be relatively flat with no predominant peak for sites 
of rock or stiff soil, which explains why almost 1/3 of the stations of I site class were identified as having 
an HVSR curve without a significant peak. Owing to the complex soil properties and uncertainty in the 
HVSR curves, there were also no predominant peaks in the HVSR curves for 1/10 of the stations of II 
sites. The Vse and H* for these excluded stations are annotated in Fig. 2e. There is no obvious Vse and 
H* tendency or clear boundary that could be detected, i.e., these sites are distributed irregularly 
throughout the whole I and II site classes. These stations should not be included in an automatic site 
classification procedure and must be analyzed individually in practice. To ensure that the entire 
classification procedure is as succinct as possible, we decided to not implement the amplitude of the 
HVSR curves as one of the criteria for identification, as was performed in our previous study (Ji, Ren, 
and Wen 2017).

3. GRNN Site Classification Scheme

Before further introduction of our proposed site classification scheme, we briefly review the basic 
concept of the GRNN method (Specht 1990) that is typically constructed using four layers: the input 
layer, pattern layer, summation layer, and output layer (Fig. 3). The first layer is the input layer, which 
is fully connected to the second layer. There are n nodes in the first layer and each node represents an 
element in the input vector X{X1, X2, X3 . . . Xn}, which is fully connected to all the neurons in 
the second pattern layer. The pattern layer consists of n nodes and each node is associated with the 
input vector assigned with the j-th sample in the training data. Each unit in the pattern layer 
implements a radial basis function by computing the Gaussian kernel of the Euclidean distance 
between the existing input vector and the training pattern. The outputs of the pattern units are passed 
to the summation layer and two types of neuron are constructed: S-summation neurons and 
D-summation neurons. The difference between these two types of neuron depends on whether weights 
defined from the training results are implemented in the outputs from the pattern layer. The final 
output layer then divides the output from the S-summation neurons by that from the D-summation 
neurons. The probability of the j-th pattern (Pj) for an unknown input vector X could be computed 
using Equations. (3) and (4) 

Di ¼ ðX � XiÞ
T
ðX � XiÞ (3) 

Pj ¼

Pn

i¼1
Yj exp � Di

2

2σ2

� �

Pn

i¼1
exp � Di

2

2σ2

� � ; i ¼ 1; 2; 3 . . . n; j ¼ 1; 2; 3 . . . k; (4) 

where Di is the Euclidean distance between the existing input vector and the training pattern, n is the 
number of elements concerned in input vector X, and σ is referred to as the spread factor, which 
influences the results in the output layer of the GRNN. Yj is the classification results index number.

Considering that our problem is to classify sites according to the shape characteristics of HVSR 
curves, the HVSR curve values at n different natural periods for the unknown sites were utilized to 
construct the input layer of the GRNN. The number of nodes in the pattern layer is equal to the 
number of natural periods of concern used in the input layer. Supposing that we have k site classes that 
need to be identified, the summation layer should have k + 1 neurons, i.e., k S-summation neurons and 
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one D-summation neuron. The output layer of the GRNN model would then provide a k-node output, 
where the output of each node indicates the probability of a station belonging to different site classes. It 
is worth noting that we did not give the final continuous value in the range of [0,4] or [0,3] as in 
Yaghmaei-Sabegh and Tsang (2011). Supposing that we have probability results for I, II, II, III as P1 
= 0.3, P2 = 0.1, P3 = 0.1, and P4 = 0.5 respectively. If the index number for them, Yj, are defined as 
1,2,3,4, the continual form of the GRNN results would be 0.3 × 1 + 0.1 × 2 + 0.1 × 3 + 0.5 × 4 = 2.8, this 
would give us misleading results (IIb) considering that Class III have the largest probability. That is 
why we did not directly set the value of Yj as 1,2,3,4 . . . for different site classes in the summation layer. 
For site class01, the Yj is set as [1,0,0,0]; site class02, the Yj is [0,1,0,0]; site class03, the Yj is [0,0,1,0] . . . 
There is merit for this form of Yk that no matter which code number the site class is defined, the final 
classification results, the site class with largest probability, would not be influenced. If the users want, 
however, they could easily derive the [0,3] or [0,4] continual form by multiplying [1,2,3,4.] with the 
corresponding probability from output layer.

Proper construction of the pattern layer is fundamental for solving the site classification problem. 
One possible way is to construct the pattern layer using all the HVSR curves for all the different site 
classes. However, the sample size of both the I and the III sites in our database was too small in 
comparison with that of the II sites, making it nearly impossible to build a stable pattern layer in this 
way. To overcome the problem of unbalanced samples sizes, we tried various methods that included 
oversampling and undersampling techniques; however, the classification results were unsatisfactory 
because of the potential overfitting or underfitting phenomenon. Therefore, the average curves of the 
HVSR curves relating to the different site classes were used directly as the pattern layer rather than 
including all the individual HVSR curves. However, this operation made the final site classification 

Figure 3. Typical four-layered structure of a generalized regression neural network. The input layer is constructed using the 
unclassified HVSR curves with n neurons representing the values at various periods in the HVSR curves. The reference curves of 
different site classes are used to build the pattern layer. Results from the output layer provide the corresponding probabilities for 
different site classes.
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results very sensitive to the reference HVSR curves themselves, as is discussed in Section 5. In the 
future work, we want to include more parameters, like station elevation, geology and topographic data 
to settle this problem.

Another problem is whether normalization of the HVSR curves should be performed. Although 
normalizing the input data and the pattern layer in an artificial neuron network is usually necessary for 
numerical or convergence reasons. If variables are measured on different scales, the effect of variables 
with small scale might be submerged in the variables with larger scale, which would produce incorrect 
results. Using normalization would also help the gradient of the neural network decreases faster. 
However, it might be unnecessary for our problem because the pattern layer was constructed using 
three reference curves rather than using a large training dataset. Thus, normalization would not be 
required to improve the network training performance. More importantly, the difference between the 
peak amplitude of the HVSR curves relating to the different site classes would not be identifiable if 
normalization were performed. In Section 5, the performance of the GRNN method when adopting 
normalization of the HVSR curves is compared to that without normalization.

For the GRNN method, there is no need to define training parameters such as the learning rate used 
in an error backpropagation neural network. Another similar and widely used pattern classifier is the 
probability neuron network (PNN) (Specht 1990), in which the final layer is the competitive layer that 
only provides output values in discrete form. The advantage of the GRNN method is its ability to 
produce continuous output values for different site classes that represent the probability that the 
HVSR is identified for the corresponding site class. The σ in Equation (4) is referred to as the spread 
factor, which was set as 1.0 in the previous study (Yaghmaei-Sabegh and Tsang 2011). As we used the 
reference curves of the different site classes directly to construct the pattern layer, the choice of the 
spread factor does not substantially influence the final classification results, which have the greatest 
probability. However, the specific probability values derived for different site classes are not constant 
under different spread factors. The smaller the spread value, the more likely the probability for each 
site class will be 0.0 or 1.0 rather than any intermediate value. A user could define a minimum 
probability threshold value (ranging from 0.0 to 1.0) to exclude any HVSR curve with shape 
characteristics similar to two or more site classes. Supposing that the probability is larger than the 
threshold value, then the corresponding site class was selected for the target station. The threshold 
value should not be set too large or too small, and we set the threshold value as 0.5 in our study. If the 
threshold value was set too large, a large number of sites with HVSR curves similar to two or more 
types of classes would not be detected. Conversely, if the threshold value was set too small, a large 
number of stations would fail the classification process because of the strict limit.

A flowchart of the process of the GRNN-based site classification scheme is presented in Fig. 4. The 
process involves the four following steps:

Step1: For an unknown site that needs classification, check whether significant peaks exist in its 
HVSR curve. If there are no peaks, the site cannot be classified using our scheme.

Step2: Use the reference HVSR curves to build the GRNN network.
Step3: Compute the probability values for different site classes.
Step4: Compare the maximum probability with the predefined threshold value and determine the 

final site class. Here, the default threshold value was set as 0.5.

4. K-means Clustering for II Sites

Of the 539 classified KIK-net stations, the majority (441) belong to the II site class because of the wide 
range of the values of Vse and H*, as illustrated in Fig. 2e. As it is unrealistic to use a single mean curve 
to represent the HVSR characteristics of this class, it was necessary to separate the HVSR curves of the 
II sites into more than one reference curve.
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Clustering analysis is the process of categorizing unlabeled observation data into clusters or groups 
according to their degree of similarity. The K-means clustering approach, which is the method used 
most commonly for clustering analysis in machine learning and data mining work, assigns each 
observation point into a cluster by minimizing the distance from the observation to the center of the 
corresponding cluster. It is an unsupervised classification procedure because no standard reference 
models or curves are predefined as in the traditional empirical classification procedure. In recent 
seismic site effect studies, K-means clustering has been used successfully on many occasions in 
applications such as nonlinear site response recognition and categorization of the site amplification 
function (Ji et al. 2020; Kotha, Cotton, and Bindi 2018; Zhu, Pilz, and Cotton 2020c). The unsupervised 
K-means clustering algorithm was applied in our study to further separate the HVSR curves of the II 
sites into subgroups.

Determination of the optimal clustering number must be accomplished before K-means cluster
ing is applied. As the optimal clustering number is the only information provided in the unsuper
vised clustering analysis, it has considerable influence on the clustering results. There are two 
methods commonly used for the estimation of optimal clustering number. One is the F-stopping- 
rule index of Caliński and Harabasz (1974), which is determined by the within-cluster and between- 
cluster sum of the squared errors. The larger the Caliński–Harabasz index, the greater the difference 
between clusters and the more likely it is to be selected as the optimal cluster number. The clustering 
number is in the range of 2 to 10 and the corresponding values of the Caliński–Harabasz index are 

Figure 4. Flowchart of the process of the GRNN-based seismic site classification scheme.
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plotted in Fig. 5a. It can be seen that the largest value of the Caliński–Harabasz index occurs when 
the observations are divided into two clusters. The other popular method involves using the change 
of the slope of the sum of the squared error (SSE) within different numbers of clusters. As the 
clustering number increases, the number of observations in each cluster decreases, which results in 
the reduction of the SSE. When the SSE decreases slowly after a specific number of clusters, further 
increase in the number of clusters will not significantly improve the clustering performance. 
Therefore, we treated the “elbow” location in the slope of the SSE as the optimal number of clusters. 
As illustrated in Fig. 5b, the “elbow” of the SSE curve exists when the observations are separated into 
two clusters. After evaluation of different clustering numbers using these two methods, it is found 
that two clusters were optimal, resulting in the smallest SSE without introducing large overlaps 
among the clusters.

Considering that the purpose of the clustering algorithm in this study was to determine the 
reference curves for the II site class, it was necessary to ensure that the arithmetic mean curves of 
the different clusters in the II site class were dissimilar to the reference curves for the I and III site 
classes. For comparison, we separated the II observations into two and three clusters using the 
K-means algorithm, as illustrated in Fig. 6a and b, respectively. The arithmetic mean curves of the 
different clusters are compared with the results for the I and III site classes. As can be seen from 
Fig. 6d, if the II sites were divided into three site clusters, the mean curve of the IIa cluster would be 
very similar to the I reference curve, which would inevitably undermine the performance of the GRNN 
site classification method. However, if the II HVSR curves were separated into two clusters, significant 
difference remained between the I and III mean curves (Fig. 6c).

Next we would use the non-parametric Kruskal–Wallis test to evaluate whether the H/V curves 
separated by K-means method are statistically different. Because the data in our study does not always 
meet the normality assumption and the sample size is not large enough, Kruskal–Wallis test rather 
than one-way ANOVA (analysis of variance) were utilized. For a specific period, the null hypothesis is 
that the H/V value of each groups comes from the same distribution; The alternative hypothesis is that 
not all groups come from the same distribution. We calculated the corresponding p-value for period 
ranging from 0.02 s to 6.0 s, as shown in Fig. 7. Supposing that the significant level is 0.1, it can be seen 
that the difference among classes are significant from 0.04 s to 4.0 s when II site class is separated into 
two clusters using the K-means clustering algorithm. Only in short period (less than 0.04 s) and the 
long period (4.0 s to 5.0 s), we accept the null hypothesis that the H/V value of each groups comes from 
the same distribution which would not significantly influence the classification results. On the other 
hand, the p-value for I and IIa site class exceeds 0.1 for period range from 0.01 s to 2.0 s, accepted the 
null hypothesis that they are from same distribution. The difference between three clusters are not 
significant as two clusters either. The comparison results indicate that two clusters are more wise 

Figure 5. Relationship between clustering number and (a) the Caliński–Harabasz index and (b) the sum of the squared error within 
clusters.

8432 K. JI ET AL.



choice considering the reference curves’ difference is more significant among different classes. 
Therefore, the II sites were separated into two clusters, which were used to construct the two 
corresponding reference curves.

5. Validation of the Proposed Classification Scheme

5.1. Site Classification for KiK-net Stations

Before utilizing the method (Fig. 4) for site class identification in China or other regions, it was 
necessary to evaluate the classification performance regarding the same selected KiK-net stations. The 
input layer of the GRNN model was designed with 94 nodes, representing corresponding HVSR values 
at natural periods in the range of 0.02–5.0 s with logarithmically evenly spaced intervals. As illustrated 
in Table 2, four cases were considered in this study to determine whether to apply normalization for 
the reference and whether to use K-means clustering for the II class.

For cases No. 01 and No. 02, the reference curves for different site classes were normalized using 
Eq. (5) 

Figure 6. The II site class separated into (a) two and (b) three clusters using the K-means clustering algorithm. (c) (d) Comparison 
between the mean curves of the I, II, and the III site classes. (c) refers to two clusters and (d) refers to three clusters.
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HVSRi
normalized ¼

HVSRi � minðHVSRÞ
maxðHVSRÞ � minðHVSRÞ

(5) 

The individual HVSR curves for each station were also normalized using the same equation. For cases 
No. 02 and No. 04, the reference curves for the II class were derived from the mean HVSR curves of the 
K-means clustering results, as illustrated in Fig 6a. The probability for the II class was the sum of the 
probability regarding the IIa and IIb classes. The references curves and the GRNN classification results 
for the four cases are compared in Fig. 8. For case No. 01, a large number of stations were classified as 
the I class for all three types of site class. Fewer than half the II sites were identified correctly. The 
classification performance in case No. 03 was much better than in case No. 01, i.e., more than half the 
sites were assigned to the right class. Considering that the only difference between these two cases was 
the application of normalization, it is proven that the choice to not apply normalization is better in 
relation to Chinese seismic site classification. The comparison between cases No. 01 and No. 02 
illustrates that classification performance could be improved significantly by applying K-means 
clustering for II sites. The same phenomenon can be observed between cases No. 03 and No. 04, 
especially for the classification results of II sites. The successfully classified results in case No. 04 are 
balanced regarding different site classes, indicating reasonably stable and robust performance.

The classification results among the four different cases are illustrated in Fig. 8; however, their 
relative classification performance must be evaluated and compared objectively. For this purpose, the 
Receiver Operating Characteristic (ROC) curve is introduced, which involves plotting the true positive 

Figure 7. The p-value calculated using Kruskal-Wallis test for the null hypothesis that the H/V ratio, ranging from 0.02s to 6.0s, comes 
from the same distribution regarding (a) two clusters and (b) three clusters.

Table 2. Four cases of concern in this study.

Case Code Apply Normalization? K-means Clustering for II site class?

No.01 Yes No
No.02 Yes Yes, using reference curves of 2 clusters
No.03 No No
No.04 No Yes, using reference curves of 2 clusters
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rate (TPR) against the false-positive rate (FPR). The TRP is the proportion of observations predicted 
correctly to be positive out of all positive observations, i.e., true positive/(true positive + false negative). 
The FPR is the proportion of observations predicted incorrectly to be positive out of all negative 
observations, i.e., false positive/(true negative + false positive). Taking the prediction of the I site class 
as an example, a positive case is when the station is classified as belonging to the I site class, whereas 
the negative case is when the station is classified as belonging to either the II or the III site class. The 
TPR is the proportion of HVSR curves classified correctly as relating to the I site class among all the 
predicted I sites, while a false positive represents the situation in which the II and III stations were 
identified incorrectly as I sites. The FPR is the proportion of HVSR curves classified incorrectly as 
relating to the I site class among all the II and III sites. In a ROC curve, a higher X-axis value indicates 
a higher number of false positives than true negatives. As the ROC curve shows the trade-off between 
sensitivity (or the TPR) and specificity (1 − FPR), the classifiers that produce curves closer to the top- 
left corner indicate better performance. The area under the ROC curve, which is abbreviated to AUC, 
is the index used most widely for description of classifier performance. The higher the AUC, the better 
the classifier performance in distinguishing between positive and negative classes. For the case 

Figure 8. Reference HVSR curves for the GRNN and the site classification results for I, II, and III stations in KiK-net conditioned under 
case (a) No. 01, (b) No. 02, (c) No. 03, and (d) No. 04. For cases No. 01 and No. 02, the reference curves for different site classes were 
normalized using Eq. (5). For cases No. 02 and No. 04, the reference curves for II were derived from the mean HVSR curves of the two 
clusters.
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AUC = 1, the classifier is perfect and could predict all classes correctly. For the case 0.5 < AUC < 1, the 
classifier tends to identify more true positives and true negatives than false negatives and false 
positives. For the case AUC = 0.5, the classifier is unable to effectively distinguish between different 
classes, because it is equivalent to a random prediction of class. Therefore, better classifiers tend to 
have higher AUC values. In our problem, the ROC curve for class I is generated by classifying I against 
not I, i.e., II or III. Similarly, the ROC curve for class II (III) is generated by classifying II (III) against 
not II (III).

The ROC curves and the AUC values for the four cases (Table 2) were computed and are illustrated 
for comparison in Fig. 9. The ROC curves of all four cases lie on the left upper side of the boundary line 
with AUC = 0.5, while differences can be observed between the AUC values relating to the four specific 
cases. The AUC value of the II site class regarding case No. 01 (i.e., 0.693) is the lowest of all four cases. 
If K-means clustering for II sites was applied (as in case No. 02), the AUC values of the II site class 
would increase to larger than 0.73. If normalization was not applied (as in case No. 03), the AUC value 
would increase further to 0.759. For case No. 04, with K-means clustering and without normalization, 
the AUC value of the I site class was slightly lower than that in case No. 03, while the AUC values of the 
II and III site classes were the largest among all four cases. Therefore, we confirm that the performance 
of case No. 04 was best overall and that the proposed classification scheme is plausible.

More than 80% of the studied stations are classified as II sites according to their borehole 
information. The total accuracy rate cannot comprehensively evaluate the overall site classification 
performance for all three site classes, which would potentially be influenced by the rate of success for 
the II sites. Therefore, a confusion matrix is introduced for subjective description of the perfor
mance of the classification model. As illustrated in Table 3, elements xij in the confusion matrix (i is 
the row index number and j is the column index number) indicate those cases belonging to class 

Figure 9. ROC curves for the four studied cases((a) Case01, (b) Case02, (c)Case 03, (d)Case04) regarding classification of the three site 
classes. The AUC values representing the area under the ROC curve for each site class are listed in the legend.
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j that were classified as class i. Hence, the elements in the diagonal are those classified correctly, 
whereas the elements out of the diagonal are those misclassified. The precision rate quantifies the 
number of site class predictions that actually belong to the corresponding site class. The recall rate 
for a specific site class was calculated using the proportion of correctly classified stations out of the 
total number of stations in the corresponding site class. The overall accuracy rate quantifies the total 
number of correct predictions among all example observations. As can be seen from Table 3, the 
precision rate is influenced significantly by the unbalanced sample size of the observations for the 
different site classes. Owing to the large number of II sites, the precision rate for the II site class is 
91.10%, which is markedly larger than the values of 28.60% and 36.10% for the I and III site classes, 
respectively. The recall rate is not influenced by the different sample sizes of the site classes and is 
better able to objectively reflect classification performance, which for the I, II, and III site classes is 
66.6%, 67.57%, and 68.42% respectively. In our study, we did not implement the amplitude of the 
HVSR curves as one of the criteria for identification as explained before. If we did not exclude the 
flat H/V curves and assigning the H/V curves with amplitude less than 2.2 as the I site class. The 
recall rate for I site class would increase from 66.6% into 76%, while the recall rate for II site class 
decrease from 68% into 63%.

The accuracy rate (recall rate) of the site classification results using different methods were 
compared by Ji, Ren, and Wen (2017). The recall rate for method proposed in Ji, Ren, and Wen 
(2017) are 64%, 62% and 58% regarding I, II, and III site classes. For method proposed by Zhao et al. 
(2006), I and III site classes are classified with a recall rate nearly 70% while the success rate is only 25% 
for II site class. The performance of method proposed by Ghasemi et al. (2009) is relatively better for 
CL-II sites (success rate of 63%) than for CL-III (46%) and CL-I (33%) sites.

5.2. Site Classification Scheme Validation Using K-NET Data

The K-NET stations were used to further validate the applicability of the classification scheme using 
a different dataset. As the maximum drilled borehole depth of K-NET stations is 20 m, some of the II, 
III, and IV sites could not be identified according to borehole information, as illustrated by the shaded 
pattern in Fig. 10. Only one station was classified as a III site, and II sites at which the depth of the soil 
thickness is >20 m could also not be identified. Classification results might jump from one class into 
another class owing to slight changes in the values of Vse and H* if they lie exactly on the boundary. As 
is known, uncertainty in drilled borehole information is prevalent and this problem could not be 
neglected. To prevent its potential impact from spreading into the evaluation of the performance of 
site classification for I and II sites, 39 stations that lie exactly on the boundary were excluded from the 
validation. Additionally, stations at which the Vs value of the bottom soil layer at depth 20 m was 
<500 m/s were also excluded because the sediment depth could not be measured accurately. The gray 
symbols in Fig. 10 represent excluded stations without predominant peaks in their HVSR curves, 

Table 3. A confusion matrix table for the GRNN site classification results regarding KiK-net stations.

Prediction Site Class

Actual Site Class

Precision rateI II III

I 40 97 3 28.60%
II-Cluster1 18 155 0 91.10%
II-Cluster2 2 143 9
III 0 46 26 36.10%
Recall rate 66.60% 67.57% 68.42%

Overall Accuracy 
Rate

67.53%
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according to the criteria mentioned in Section 2.2. Ultimately, 330 K-NET stations were selected for 
validation of the GRNN site classification scheme with 35, 294, and 1 station identified as I, II, and III 
site classes, respectively.

A confusion matrix for the K-NET classification results was computed and the results are listed in 
Table 4. It can be seen that the recall rates for I and II site classes are 68% and 60%, respectively, and 
that the overall accuracy rate is 61.0%. The classification performance for I sites is similar to that of the 
KiK-NET stations. However, the recall rate of the classification results for the II sites is relatively lower 
than that for the KiK-net stations, which is likely because almost half the II stations were excluded 
owing to the borehole depth limit. The performance of matching III site class were not validated 
because only one sample data was included.

We calculated the mean HVSR curves for all the classified K-NET sites and then compared them 
with the reference curves used in our GRNN scheme, which were derived from the KiK-net dataset. As 
illustrated in Fig. 11, the three mean HVSR curves have shapes similar to the reference curves. The 
predominant period of the mean curve of the I site class is slightly shorter than the reference curve. 
The mean II site class HVSR curve lies exactly between the reference curves of the two clusters relating 
to the II sites. The curve for the III sites is almost the same as the III reference curve. The validation 
results indicate that the GRNN site classification scheme could be applied effectively in the evaluation 
of soil conditions.

Figure 10. Distribution of the values of Vse and H* for the studied K-NET stations. Sites with sediment thickness > 20 m could not be 
identified owing to the borehole depth limit, as illustrated by the hatched shaded pattern. Stations that lie exactly on the boundary 
of the I and II site classes were also excluded. Sites without predominant peaks in their HVSR curves are represented by gray symbols.

Table 4. A confusion matrix table for the site classification results regarding K-NET stations.

Prediction Site Class

Actual Site Class

Precision rateI II III

I 24 71 0 25%
II 9 176 0 95%
III 2 47 1 –
Recall rate 68% 60% –

Overall Accuracy 
Rate

61.0%
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6. Application of the GRNN Site Classification Scheme to China Stations

6.1. NSMONS Strong Ground Motion Data Set

The strong ground motion dataset used here is largely the same as that utilized in our previous HVSR 
site classification work (Ji, Ren, and Wen 2017). Overall, 7183 three-component recordings were 
extracted from the China National Strong Motion Networks Observation Center (2007–2015). After 
excluding recordings from the Wenchuan and Lushan earthquake events, the remaining recordings 
were processed and the corresponding HVSRs were computed using the procedure discussed in 
Section 2.2. We used the recordings with peak ground acceleration in the range of 5–100 gal to 
avoid possible influence from recordings with a low signal-to-noise ratio and site nonlinearity 
response under strong ground motion input. Only stations with more than three recordings were 
selected to ensure that stable HVSR curves could be obtained. Ultimately, 200 stations with 1281 
recordings were selected for site classification in China.

6.2. Site Classification Results

Using the GRNN site classification scheme, 167 of 200 NSMONS stations were classified. No significant 
peaks could be identified in the remaining 35 stations according to the criteria mentioned in Section 2.2. 
Of the 167 stations selected, 32, 88, and 47 stations were classified as I, II, and III site classes. The 
corresponding probability for each site class and the final classification results are listed in Table A1.

The average HVSR curves were calculated for I, II and III site class according to the site identifica
tion results. Then the mean curves were compared with the reference curves derived from the selected 
KiK-net data as illustrated in Fig. 12. For all classes, the overall shapes of the derived mean curves are 
similar to the target reference curves, indicating that the classification results are generally satisfactory. 
For I sites, a predominant peak cannot be identified in the mean curve, which might reflect the small 
number of classified I stations (32 stations) in China.

We collected borehole information of 73 classified stations using drilling P-S logging data from 
station construction reports, and we calculated the corresponding Vse and H* to classify the site 
classes based on the definition of Chinese seismic code. The distributions of the values of Vse and H* 
are presented in Fig. 13. The Vse and H* information could be found in Table A2. Most HVSR- 
classified stations are consistent with the results derived from borehole data. Owing to the wide 
range of values of Vse and H*, the recall rate for the II site class is almost 100%. For some stations, 
the borehole depth only reaches 20, 30, or 50 m, and the actual sediment thickness is not measured. 
They were labeled exactly on the boundary of 20, 30, or 50 m in Fig. 13. It is possible that if the 
actual soil layer thickness was >50.0 m, these stations might be classified as III site class. In the 
coastal area of Tianjin Province, the sediment thickness at some stations is >50 m (i.e., 012DAT, 

Figure 11. Comparison between the reference curves and mean HVSR curves derived from the classification results of 330 K-NET 
stations.
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012DZZ, 012FTZ, 012XAZ, and 012ZHB). These stations with soft site condition were all assigned 
successfully to the III class using the GRNN scheme. Three stations (051MXD, 053RHT, and 
065WSL) were treated as “rock” stations based on geological investigation before selecting the 
station location. They were all assigned successfully to the I class using the GRNN classification 
scheme. Among the 32 stations classified as I site class, the borehole information of 7 stations 
indicated that they were II sites. Borehole data of six stations classified as III site class indicated that 
they were actually II sites, partially because the depth of their soil layer (>30 m) is close to the 
boundary between II and III sites. We plotted the H/V curves for four mis-identified stations in 
central parts of the clusters of the class II, as shown in Fig. 13b–e. 0.51YBH was wrongly assigned 
with CL-III site class mostly because there are more than one peaks observed in the H/V curves. The 
peaks at long period around 1.0 s makes it wrongly assigned with the CL-III site class. Same 
phenomenon was observed for all three mis-identified CL-II stations that there are more than one 
predominant peaks in the H/V curves. The predominant peaks at short period around 0.1 s makes 

Figure 13. Comparison of site classes based on borehole data and assigned using the GRNN-based HVSR method for some NSMONS 
stations.

Figure 12. Comparison between the reference curves and mean HVSR curves computed based on the GRNN classification results of 
the NSMONS stations. Overall, 32, 88, and 47 stations were classified as I, II, and III site classes.
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them wrongly assigned with the CL-I site class. For 051LDJ, the amplitude of H/V curve is 2.23, 
which is slightly exceeds our predefined amplitude threshold. It is indicated that the H/V curves 
with multiple peaks would influence the GRNN matching results. Considering that the overall 
accuracy rate of the GRNN scheme is around 60% to 70% for the KiK-net and K-NET stations, 
similar classification performance is expected for NSMONS stations, according to the borehole 
validation results of the 73 stations.

7. Conclusions

In this study, we developed the GRNN method in HVSR seismic site classification. China strong 
motion stations were used as example study case.

Firstly, the HVSR curves of 539 KiK-net stations in Japan were selected for construction of 
reference patterns. To reduce the variability within specific site classes, K-means clustering algorithm 
was proposed to further separate the HVSR curves of II site class stations into two patterns. The ROC 
curve and AUC computation results indicated that non-normalization and K-means clustering for II 
sites could improve the overall classification performance for all three site classes. After exclusion of 
the HVSR curves without predominant peaks, the overall recall rate for I, II and III sites could reach 
66.60%, 67.57%, and 68.42% respectively. This is proved to be an efficient strategy for site classification 
which having relatively wide parameter boundary range. The GRNN-based classification scheme was 
then validated using borehole information of 330 K-NET stations, which resulted in a recall rate of 
68.0% and 60.0% for I and II site classes, respectively. The mean curves of the classified stations were 
similar to the reference curves that were used in the pattern layer. Considering that almost half the II 
site class stations were not included in the validation owing to the maximum borehole depth limit of 
K-NET stations, the classification performance was reasonably satisfactory.

Finally, based on the HVSR curves calculated from China strong ground motion data acquired 
during 2007–2015, the site conditions of 167 NSMONS stations were estimated using the GRNN- 
based classification scheme. The results were partially validated using borehole information from 73 
stations. The degree of similarity between the mean curves of the classification results and the 
reference curves indicated that the classification results were reasonably reliable.

The proposed GRNN-based site classification scheme represents a promising method for estimation 
of the site conditions according to Chinese seismic code. This would be helpful for accurate analysis of 
ground motion data in China and could be applied further regarding development of ground motion 
models. The proposed site classification workflow could also be applied to other regions or countries 
after proper adjustment of the reference HVSR curves according to different site class definitions.
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Appendix

Table A1. The GRNN site classification results for stations of NSMONS of China.

Station 
name P1 P2 P3

Site 
class

Station 
name P1 P2 P3

Site 
class

Station 
name P1 P2 P3

Site 
class

012DAT 0.000 0.000 1.000 III 051PZT 0.000 1.000 0.000 II 053YML 0.000 1.000 0.000 II
012DZZ 0.000 0.000 1.000 III 051QCS 0.007 0.993 0.000 II 053YPC 0.000 0.000 1.000 III
012FTZ 0.000 0.001 0.999 III 051SFB 0.000 1.000 0.000 II 053YRH 0.000 0.000 1.000 III
012XAZ 0.000 0.002 0.998 III 051SWH 0.000 1.000 0.000 II 053YSX 0.000 0.000 1.000 III
012ZHB 0.000 0.000 1.000 III 051TQL 0.000 1.000 0.000 II 053ZJA 0.000 1.000 0.000 II
013DXZ 0.000 0.000 1.000 III 051WCW 0.825 0.175 0.000 I 053ZTT 1.000 0.000 0.000 I
013JZG 0.000 0.000 1.000 III 051YAD 0.194 0.806 0.000 II 062MXT 0.000 1.000 0.000 II
013ZHX 0.000 0.000 1.000 III 051YAL 0.000 1.000 0.000 II 062TCH 0.000 1.000 0.000 II
014QXU 0.000 1.000 0.000 II 051YBH 0.000 0.000 1.000 III 062YXB 0.000 0.000 1.000 III
015BYM 0.000 0.999 0.001 II 051YYL 1.000 0.000 0.000 I 062ZNI 0.000 1.000 0.000 II
015TLT 0.000 0.000 1.000 III 053BBJ 0.000 0.000 1.000 III 063DCD 0.000 1.000 0.000 II
015WLH 0.000 1.000 0.000 II 053BSL 0.000 0.000 1.000 III 064BFN 0.000 0.011 0.989 III
021NQT 0.000 1.000 0.000 II 053BWY 0.000 1.000 0.000 II 064GJZ 0.000 0.000 1.000 III
051AXY 1.000 0.000 0.000 I 053CNX 0.000 0.000 1.000 III 064JSN 0.000 0.000 1.000 III
051BCB 1.000 0.000 0.000 I 053DFY 0.000 0.000 1.000 III 064WUZ 0.000 1.000 0.000 II
051BCQ 1.000 0.000 0.000 I 053DHD 0.000 0.000 1.000 III 064YCH 0.000 0.000 1.000 III
051BTT 0.000 1.000 0.000 II 053DJL 0.000 1.000 0.000 II 065ALL 0.000 0.000 1.000 III
051BXY 1.000 0.000 0.000 I 053DSL 0.000 1.000 0.000 II 065ATS 0.999 0.001 0.000 I
051BXZ 0.000 1.000 0.000 II 053DTD 0.718 0.250 0.032 I 065BAC 0.000 1.000 0.000 II
051DJH 0.000 1.000 0.000 II 053DZF 0.000 0.935 0.065 II 065BKS 0.000 1.000 0.000 II
051EMS 0.000 1.000 0.000 II 053ENJ 0.000 0.000 1.000 III 065CYZ 0.000 1.000 0.000 II
051GXT 0.000 1.000 0.000 II 053HTJ 0.000 0.000 1.000 III 065DAQ 0.000 1.000 0.000 II
051GYZ 0.000 1.000 0.000 II 053HYC 0.634 0.000 0.366 I 065EBT 0.000 1.000 0.000 II
051HDQ 0.000 1.000 0.000 II 053JCZ 0.000 0.000 1.000 III 065EJT 0.000 1.000 0.000 II
051HDX 0.000 1.000 0.000 II 053JPW 0.000 0.000 1.000 III 065FCH 0.000 0.000 1.000 III
051HSD 1.000 0.000 0.000 I 053JZX 0.000 1.000 0.000 II 065GDL 0.000 1.000 0.000 II
051HSS 0.000 1.000 0.000 II 053LDC 0.000 1.000 0.000 II 065GLK 0.000 1.000 0.000 II
051HYY 0.001 0.999 0.000 II 053LDS 0.000 1.000 0.000 II 065HLJ 0.000 1.000 0.000 II
051JGS 0.000 1.000 0.000 II 053LDT 0.000 0.000 1.000 III 065HZW 0.000 0.000 1.000 III
051JLT 0.048 0.952 0.000 II 053LDX 0.000 0.000 1.000 III 065JIG 0.000 1.000 0.000 II
051JYC 0.000 1.000 0.000 II 053LFB 1.000 0.000 0.000 I 065JZC 0.000 1.000 0.000 II
051JYH 0.245 0.755 0.000 II 053LJH 0.000 0.000 1.000 III 065KCX 0.000 0.000 1.000 III
051JYW 0.000 1.000 0.000 II 053LLT 0.000 1.000 0.000 II 065KEL 0.856 0.000 0.144 I
051JYZ 0.000 1.000 0.000 II 053LLX 0.000 1.000 0.000 II 065KSU 1.000 0.000 0.000 I
051JZG 0.000 1.000 0.000 II 053LZH 0.002 0.998 0.000 II 065KZR 0.000 1.000 0.000 II
051JZW 1.000 0.000 0.000 I 053MMM 0.000 1.000 0.000 II 065MUS 1.000 0.000 0.000 I
051LDJ 1.000 0.000 0.000 I 053MST/ 

053QJX
0.000 1.000 0.000 II 065SCH 0.000 1.000 0.000 II

051LDL 0.000 1.000 0.000 II 053NBD 1.000 0.000 0.000 I 065SLM 0.000 1.000 0.000 II
051LDS 0.000 1.000 0.000 II 053NRM 0.678 0.322 0.000 I 065SRT 0.000 0.000 1.000 III
051LSJ 1.000 0.000 0.000 I 053NRT 0.000 1.000 0.000 II 065SUF 0.000 1.000 0.000 II
051LSL 0.000 1.000 0.000 II 053PDH 0.000 1.000 0.000 II 065SYA 0.000 0.989 0.011 II
051LXK 0.000 1.000 0.000 II 053PMX 1.000 0.000 0.000 I 065TSD 0.000 1.000 0.000 II
051LXM 0.000 1.000 0.000 II 053PRX 0.001 0.000 0.999 III 065WLG 0.000 1.000 0.000 II
051LXS 0.000 1.000 0.000 II 053QCT/ 

053QQC
0.000 1.000 0.000 II 065WMK 1.000 0.000 0.000 I

051MBQ 1.000 0.000 0.000 I 053QWZ 0.000 0.000 1.000 III 065WPR 1.000 0.000 0.000 I
051MCL 0.000 1.000 0.000 II 053RHT 1.000 0.000 0.000 I 065WQT 0.000 1.000 0.000 II
051MLN 0.000 1.000 0.000 II 053SML 0.008 0.992 0.000 II 065WSL 1.000 0.000 0.000 I
051MXF 1.000 0.000 0.000 I 053SSM 0.000 0.000 1.000 III 065XKR 0.000 1.000 0.000 II
051MXN 1.000 0.000 0.000 I 053TPX 0.387 0.613 0.000 II 065XTL 0.000 0.000 1.000 III
051MYS 0.000 1.000 0.000 II 053WYX 0.000 1.000 0.000 II 065YAH 0.991 0.009 0.000 I
051NNH 0.000 0.000 1.000 III 053XQD 0.000 0.000 1.000 III 065YJT 0.000 0.000 1.000 III
051PJD 0.000 1.000 0.000 II 053XXZ 0.203 0.797 0.000 II 065YPH 0.000 0.000 1.000 III
051PWD 0.000 1.000 0.000 II 053YBD 0.000 1.000 0.000 II 065YTK 0.996 0.000 0.004 I
051PWM 1.000 0.000 0.000 I 053YBX 0.000 0.000 1.000 III 065YYG 0.000 1.000 0.000 II
051PWN 0.000 1.000 0.000 II 053YCH 0.000 0.000 1.000 III 065ZYC 0.000 0.000 1.000 III
051PWP 0.979 0.021 0.000 I 053YJG 0.000 0.000 1.000 III
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