文章编号: 0258-2724(2021)01-0001-09

DOI: 10.3969/j.issn.0258-2724.20200241

地震动非参数化谱反演可靠性分析

王宏伟^{1,2},任叶飞^{1,2},温瑞智^{1,2},周影^{1,2}

(1. 中国地震局工程力学研究所, 黑龙江 哈尔滨 150080; 2. 中国地震局地震工程与工程振动重点实验室, 黑龙江 哈尔滨 150080)

摘 要: 非参数化谱反演是研究地震动震源、传播路径及场地效应的关键技术,反演的可靠性对地震震源物理的 准确认识及地震危险性的有效预测具有重要影响.为分析震源和场地项权衡的约束条件、单步法/两步法的选择、 震源参数估计等关键环节对反演可靠性的影响,以 2016-2017 年意大利中部地震序列的地震动谱反演为例,研究 给出确保反演可靠性的合理建议.研究结果表明:参考场地的选择显著影响反演可靠性,在综合考虑场地地质资 料、观测记录 H/V 谱比等初选基础上,根据震源谱、震源参数等的试算结果最终确定合适的参考场地;非参数化 谱反演的单步法和两步法的选取显著影响远场高频路径衰减的反演结果,一定程度上影响高频震源谱,对震源参 数估计结果的影响较小,由于两步法的路径衰减项易被场地项干扰,单步法是最佳选择;利用网格搜索方法估计 反演震源谱的矩震级、拐角频率和高频衰减参数时,为尽可能避免拐角频率和高频衰减参数之间的权衡,应利用 中低频震源谱估计矩震级和拐角频率,当拐角频率大于 0.5 Hz 时可不考虑矩震级和拐角频率的权衡对其估计的 影响,对于拐角频率较小且震级较大地震可直接利用地震矩计算结果以提高震源参数估计的可靠性. 关键词: 地震动; 谱反演; 可靠性; 参考场地; 震源参数

中图分类号: P315 文献标志码: A

Reliability Analysis on Non-parametric Spectral Inversion of Seismic Ground Motion

WANG Hongwei^{1,2}, REN Yefei^{1,2}, WEN Ruizhi^{1,2}, ZHOU Ying^{1,2}

(1. Institute of Engineering Mechanics, China Earthquake Administration, Harbin 150080, China; 2. Key laboratory of Earthquake Engineering and Engineering Vibration of China Earthquake Administration, Harbin 150080, China)

Abstract: Non-parametric spectral inversion is the key technology to study the seismic source, propagation path and site effects. The reliability of spectral inversion was responsible for exactly understanding seismic source physics and effectively predicting seismic hazards. In this work, the non-parametric spectral inversion of ground motions during the 2016-2017 central Italy seismic sequence was used to systematically evaluate how the reliability of spectral inversion was dominantly controlled by several decisive factors, i.e., constraints for tradeoffs between source and site terms, selection of one- or two-step non-parametric inversion methods, and potential effects of trade-offs among the parameters describing source spectra on their estimations. Results show the crucial effects of reference site on the inversion reliability. Multiple trials for the source spectra and source parameters were necessary for selecting the appropriate reference sites, which were preliminarily regarded as rock sites based on the surface geological information, the horizontal-to-vertical spectral ratios, etc. The usage of either one- or two-step method has obvious effects on high-frequency propagation path attenuation at far fields. However, negligible effects occurred on source parameter estimates. The one-step method was preferred because the path attenuation given by two-step method could be interfered by the site term. In order to eliminate the effects of

收稿日期: 2020-04-26 修回日期: 2020-06-24 网络首发日期:

基金项目:国家自然科学基金(51808514,51878632);黑龙江省自然科学基金优秀青年项目(YQ2019E036)

第一作者: 王宏伟 (1990—), 男, 助理研究员, 博士, 研究方向为工程地震, E-mail: whw1990413@163.com

通信作者:任叶飞 (1983—), 男, 研究员, 博士, 研究方向为工程地震, E-mail: renyefei@iem.ac.cn

引文格式: 王宏伟,任叶飞,温瑞智,等. 地震动非参数化谱反演可靠性分析[J].西南交通大学学报,2021,56(1): 1-9.

WANG Hongwei, REN Yefei, WEN Ruizhi, et al. Reliability analysis on non-parametric spectral inversion of seismic ground motion[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 1-9.

trade-offs between corner frequency (f_c) and high-frequency decay parameter (κ) , low- and intermediatefrequency source spectra were suggested to estimate the moment magnitude (M_w) and f_c . It was found that tradeoffs between M_w and f_c have weak effects on their estimations for the cases of $f_c > 0.5$ Hz. Predefined M_w can be included for the reliable f_c estimates for those large events with small f_c .

Key words: seismic ground motion; spectral inversion; reliability; reference site; source parameters

地震动谱反演是频域上同时分离地震动震源、 传播路径和场地效应的高效方法,该方法普遍应用 于地震震源特征^[14]、地壳介质衰减特性^[5-6]、场地效 应^[7-8]、地震动不确定性^[9]等的研究,这些研究对深入 理解地震震源物理、探究地震发震机理、可靠预测地 震动及地震危险性有着重要贡献.

根据传播路径衰减表示方式的差异,谱反演方 法可分为参数化和非参数化两种. Castro 等^[10]首次 提出的非参数化方法将传播路径衰减约束为距离的 单调递减平滑曲线,即体现了传播路径衰减的复杂 性,又描述了地震波在传播中的不断衰减,解决了参 数化方法利用经验衰减模型会导致品质因子反演结 果为极大值甚至负值,违背地震波衰减损耗的物理 事实. 之后非参数化方法开始广泛应用于地震活跃 地区的地震波衰减特征及地震震源特征等的研究, 例如日本^[2]、新西兰^[11]、欧洲和土耳其^[3,9,12]、中国四川 地区^[13]等,相比参数化方法,近年来非参数化方法的 应用更普遍.

针对影响地震动非参数化谱反演可靠性的关键 环节,包括参考场地的确定、单步法/两步法的选择、 震源参数估计,本文以 2016—2017 年意大利中部地 震序列的地震动非参数化谱反演作为典型实例,欧 洲强震动数据中心发布了地震序列 8000 余组人工处理 的高质量的地震动记录(http://esm.mi.ingv.it/),本研 究限定记录峰值地面加速度(PGA)上限(100 cm/s²)、 震源距上限(100 km)及台站/地震记录数下限 (10/10),选用了 142个台站收集的 78次震级 *M*_L=3.5~6.1级地震的5135组观测记录用于谱反演 研究,截取记录S波并在其前后增加余弦边瓣窗口 消除截断误差,S波到时和结束时刻分别通过人工 识别和能量法^[3]确定,最后以两水平方向S波傅氏 谱均方根代表观测记录水平向S波傅氏谱.本研究 选用大量强震动记录可确保足够的数据冗余,避免 因记录数过少造成反演结果的不可靠,通过系统分 析反演结果,提出确保反演可靠性的上述关键环节 的处理建议,可靠反演结果有助于地震震源物理的 准确认识及地震动和地震危险性的有效预测.

1 非参数化谱反演方法

第 *i* 个地震(震级 *M_i*)中第 *j* 个台站(震源距 *R_{ij}*) 观测到的地震动水平向 S 波的傅里叶幅值谱(*O_{ij}*) 可表示为

 $\ln O_{ij}(f, M_i, R_{ij}) = \ln S_i(f, M_i) + \ln A_{ij}(f, R_{ij}) + \ln G_j(f),$ (1)

式中:f为频率;S_i(f,M_i)为第 i个地震的震源谱; A_{ij}(f,R_{ij})为传播路径衰减;G_j(f)为第 j个台站的场地 效应.

两步法首先从S波傅氏谱中分离传播路径衰减 项(第1步),即

$$\ln O_{ij}(f, M_i, R_{ij}) = \ln M_{ai}(f) + \ln A_{ij}(f, R_{ij}), \quad (2)$$

式中: Mai(f) 为与第 i 次地震震级大小相关的量.

之后从传播路径衰减修正的S波傅氏谱中同时 分离震源和场地项(第2步),即

$$\ln (O_{ij}(f, M_i, R_{ij}) / A_{ij}(f, R_{ij})) = \ln S_i(f, M_i) + \ln G_j(f).$$
(3)

单步法直接求解式(1),从S波傅氏谱中同时 分离震源、传播路径衰减和场地项,求解时需约束传 播路径衰减及震源和场地项的权衡.

2 参考场地选择

参考场地一般为场地放大恒为1的无风化出露 坚硬岩石场地^[16]或平均场地放大为1的多个岩石场 地^[10]或至少一个放大效应已知的场地^[17].实际应用 中找到理想的出露坚硬岩石场地作为参考场地十分 困难,多数研究采用场地放大效应恒为1的一个或 多个岩石类场地作为参考场地^[3,9,11].

一般考虑下列条件选取参考岩石场地:1)场地 地质资料,例如:场地类别、场地等效剪切波速(例 如地下 30 m 土层的等效剪切波速 V_{s0})等;2)水平/垂 直(H/V)谱比曲线,岩石场地的谱比曲线在整个频 段上平坦且幅值较小. 为保证反演结果的稳定性和 可靠性, Bindi 等^[17]规定尽可能选取观测记录足够多 目记录到震级和方位角范围足够大的岩石台站. Pacor 等^[3]则假定所有台站均为岩石场地且平均场地 放大恒为1,利用谱反演给出所有台站的场地放大 效应,再选取整个频段上场地放大<2的场地作为参 考岩石场地. Oth 等^[11]首先对参考岩石场地进行初 选,通过震源谱和场地效应的谱反演试算结果从初 洗中确定,鉴于理想岩石场地较难获取,上述这些研 究提供了洗取参考岩石场地的一系列方法,但这些 方法均是不得已而为之,参考场地选取接影响谱反 演的可靠性.

根据 Eurocode 8 规范,本研究的 142 个观测台 站中 A 类场地(岩石场地或其它接近岩石地质构造

的场地,场地表面软弱层不大于 5 m 且 V_{s30} >800 m/s) 台站共 33 个,其中 7 个为流动观测台站,A 类场地 台站作为参考场地的备选,因流动观测台站建设要 求较低,受环境影响较大,7 个流动观测台站不纳入 备选之列.26 个备选台站中,记录数>50 组、40~50 组、 30~40 组、20~30 组、<20 组的台站分别为 7、5、2、 4 和 8 个,有详细钻孔数据的 3 个台站(LSS、 AQP 和 PSC, V_{s30} 分别为 1 091、836、1 000 m/s),只 有 LSS 台站的观测记录充足(66 组), AQP 和 PSC 台站观测记录较少(分别为 15 组和 14 组).

进一步缩小备选范围,仅以记录数不少于50组 (73、111、155、105、60、58、157)的7个台站(LSS、 TOD、FIAM、GNU、MNF、SPM 和 MGAB)作为备 洗,若最终证明均不合适,可适当放宽对备选台站记 录数的要求. 分别利用 7 个台站的 PGA≤50 cm/s² 的观测记录计算 0.25~20.00 Hz 的 H/V 谱比曲线 (见图1). FIAM 台站缺乏地形地貌描述且其 H/V 谱比曲线在1Hz附近出现较为明显的峰值;SPM 台站位于陡坡边缘, H/V 谱比曲线幅值大旦 6 Hz 附近出现明显峰值; GNU 和 MGAB 台站的 H/V 谱 比曲线幅值较大,说明这两个台站存在明显场地放 大效应.上述4个台站均不适合作为参考岩石场地. LSS 台站的观测记录方位角范围广(大约 100°)、记 录震源距范围较大(>30 km)、H/V 谱比曲线平坦且 幅值小; TOD 和 MNF 台站的 H/V 谱比曲线平坦且 幅值小,此3个台站可作为初选的参考岩石场地.

Fig. 1 The horizontal-to-vertical spectral ratios at seven stations

本研究以 H/V 谱比作为 3 个初选参考场地的 场地放大效应,反演给出 2016—2017 年意大利中部 地震序列观测记录的传播路径衰减、震源谱和场地效应,以LSS、TOD和MNF分别作为参考场地得到

的 6 次典型地震的加速度震源谱如图 2 所示, 6 次 地震(1#~6#)为 20160824013632_ M_L 6.0(2016年 8月 24日 01:36:32 发生的 M_L 6.0级地震, 余同)、 20160825031716_ M_L 4.5、20160824232205_ M_L 3.8、 20161026191806_ M_L 5.9、20161031070545_ M_L 4.1、 20161103003501_ M_L 4.8, 震源谱大体上符合 ω^2 理 论震源模型^[14], 但不同参考场地得到的震源谱的形 状及幅值差异明显. LSS 和 MNF 台站作为参考场地的震源 谱的幅值更小; TOD 台站作为参考场地的震源谱的 形状明显不同, 低频段(0.5~2.0 Hz)幅值更大, 高频 段(>10Hz)衰减更快. 上述结果清楚地展示了参考 场地选取对反演结果的显著影响.

6 typical earthquakes.

ω⁻²模型^[14]和高频衰减模型^[18]表示反演震源谱,即

 $S(f) = (2f)^2 exp(-f)CM_0/[1 + (f/f_c)^2], \qquad (4)$

式中:C为常数,定义见文献[4]; M_0 为地震矩; f_c 为 拐角频率; κ 为高频衰减参数.

网格搜索方法估计地震的震源参数(M_0 、 f_c)及 κ , 根据 M_0 计算矩震级 M_w ,利用 M_0 、 f_c 计算地震应力 降 Δ $\sigma^{[14]}$.

LSS、MNF和TOD台站分别作为参考场地时, 利用反演震源谱得到的 *M*w估计值与 INGV 正式发 布的地方震级 *M*L的差值如图 3(a)所示,整体上 *M*w估计值依次增大,LSS和 MNF台站作为参考场 地的 *M*w估计值接近,明显低于TOD台站作为参考 场地的结果.*M*L<5.3 时,随震级增大 *M*w估计值与 *M*L之差整体上呈下降趋势,*M*w估计值从明显高于 *M*L逐渐变化为低于或接近 *M*L;*M*L>5.3 时,*M*w估计 值普遍低于 *M*L,且随 *M*L增大,*M*w与 *M*L的差异逐 渐缩小.图 3(a)同时比较了TDMT和MTS提供的 M_w 与 M_L 之差. TDMT 和 MTS 提供的 M_w 值普遍低 于 M_L , LSS、MNF和 TOD 台站作为参考场地的 M_w 估计与 TDMT、MTS 提供的 M_w 存在一定偏差, 尤其是小震的矩震级估计偏大,这可能与距离相关 的能量法截取的小震记录 S 波窗口过大有关,但 TOD 作为参考场地的 M_w 估计与 TDMT、MTS 提供 的 M_w 的偏差最显著.

图 3(b) 和 (c) 给出了 LSS、MNF 和 TOD 台站 作为参考场地的 f. 和 Δσ 估计值, 参考场地不同时 f_c 和 $\Delta\sigma$ 估计值差异明显, LSS 作为参考场地的 f_c 估 计值明显低于 MNF 和 TOD 作为参考场地的结果, 相应的 LSS 作为参考场地的 Δσ 估计值也最小. 参 考场地不同时 M₀-f_c和 Δσ-M_w的变化趋势较为一 致, M_w<5.0时, Δσ估计值随 M_w的增大而增大, LSS、MNF 和 TOD 作为参考场地的 $\Delta\sigma$ 估计值为 0.11~2.90、0.32~9.97 和0.55~13.45 MPa;*M*_w≥5.0 时, $\Delta \sigma$ 估计值随 M_w 的变化不明显, LSS、MNF 和 TOD 作为参考场地的 Δσ为 5.4~12.19、12.96~26.50 和 28.57~78.84 MPa, 明显高于全球板间地震平均 应力降为 3.31 MPa^[19]及 Bindi 等^[17]估计的 1997— 1998年 Umbria-Marche 地震序列(本研究选用地震 序列的西北部)中15次 M_w=4.2~6.0级余震的应力 降(图 3(c)). Pacor 等^[3]利用非参数化谱反演确定的 2009年 L'Aquila 地震序列(本研究地震序列的南 部)应力降为 0.25~25.00 MPa, 与本研究选用 LSS、 MNF 台站作为参考场地得到的 $\Delta\sigma$ 估计值的范围较 为一致(图 3(c)).

LSS、MNF 和 TOD 台站作为参考场地的 κ 估 计值依次增大(如图 3(d)所示), κ 估计值近似服从 正态分布, LSS 和 MNF 作为参考场地的 κ 估计值较 为接近, 均值为 0.017 s 和 0.023 s, 明显低于 TOD 作 为参考场地的 κ 估计值, 均值为 0.056 s. κ 估计值反 映了参考场地中未予考虑的可能由于近地表岩层风 化等引起的高频衰减^[20]. 一般认为岩层风化越严重, 其 κ 值越大. Oth 等^[2]利用日本井下钻孔记录反演得 到的井下钻孔台站的 κ 均值为 0.015 s, LSS 和 MNF 台站作为参考场地的 κ 均值与日本井下钻孔台站 κ 均值接近, 低于一般岩石场地的 κ 值(0.02 ~ 0.04 s), 说明 LSS 和 MNF 台站近地表岩层风化不严重, 而 TOD 作为参考场地的 κ 均值较高则说明该台站近 地表岩层风化可能较为严重.

Fig. 3 Estimated source parameters (M_w , f_c and $\Delta\sigma$) and high-frequency decay parameters (κ)

通过分析分别选用 LSS、MNF 和 TOD 台站作 为参考场地的震源谱、震源参数及高频衰减参数的 试算结果, LSS 和 MNF 台站均可作为参考岩石场 地的合理选择.我们建议在选取参考场地时,首先综 合考虑场地地质资料、观测记录 H/V 谱比曲线幅值 和形状初步选择参考岩石场地,再分别以初选作为 参考场地进行谱反演,根据震源谱、震源参数、高频 衰减参数的试算结果,最终选取合适的参考场地.

3 单步法与两步法

本研究分别采用两步法和单步法完成 2016—2017 年意大利中部地震序列地震动记录的非参数化谱反 演,均以 LSS 台站作为参考场地.两种方法分别确 定的 0.25~20 Hz 传播路径衰减差异明显(图 4(a)), 差异大小与震源距、频率显著相关(图 4(b)).近场 (<20 km)或低频 S 波(<2 Hz)的传播路径衰减较为 一致,高频 S 波(<5 Hz)传播路径衰减的差异随震源 距增大迅速扩大,高频 S 波(>5 Hz)在远场(>60 km) 的传播路径衰减的差异显著,两者相差可达 5 倍.与 单步法相比,两步法确定的传播路径衰减更强烈(数 值更小).采用几何扩散和非弹性衰减简单表示传播 路径衰减曲线,利用奇异值分解方法给出两种方法 确定的传播路径衰减的几何扩散指数 n 和品质因 子 Q,两步法和单步法的 n 值较为一致,-1.01 和-1.07, 品质因子的差异明显,分别为 96.45f⁰⁵⁹ 和 212.45f⁰⁶¹, 说明两种方法路径衰减差异主要为频率相关的非弹 性衰减差异.

6

 (a) 传播路径衰减曲线; (b) 频率、距离的影响
 图 4 基于两步法和单步法反演路径衰减的差异
 Fig. 4 Differences between path attenuations inverted by the two-step and one-step methods

利用单步法和两步法分别确定的 6 次典型地震的加速度震源谱如图 5 所示,两步法的震源谱幅值 普遍高于单步法,>2.0 Hz 的高频段尤为明显.基于 反演震源谱,利用网格搜索方法估计地震震源参数 (M_w,f_c) 及高频衰减参数 $(\kappa)(见图 6a,b,c),两种方$ $法 <math>M_w$ 估计值相近,多数地震 M_w 估计值相差不超 过 0.02;两种方法 f_c 估计值差异较小,单步法 f_c 估计 值整体上略小于两步法,多数地震单步法 f_c 估计值 约为两步法的 88%~98 %,我们还注意到 f_c 估计值 的差异与 f_c 大小有关, f_c 估计值的差异近似随 f_c 增 大而增大;两种方法 κ 估计值差异并不明显,单步 法 κ 估计值普遍高于两步法,多数地震单步法 κ 估 计值约为两步法的 1.0~1.5 倍,只有极少数 κ 估计 值 <0.01 s 的地震,单步法 κ 估计值约为两步法 2.0~6.0 倍.利用 M_w 和 f_c 估计值计算得到 $\Delta \sigma$ 图 6(d) 和辐射地震能量 E_s 图 6(e),两种方法 $\Delta \sigma_s E_s$ 估计值 差异不明显,单步法 $\Delta \sigma$ 和 E_s 估计值均小于两步法, 且大多数地震单步法 $\Delta \sigma$ 和 E_s 估计值约为两步法 的 70%~90 %.

图 5 单步法和两步法反演给出的 6 次典型地震的 加速度震源谱

非参数化谱反演的单步法和两步法给出的远场 高频路径衰减差异显著,高频震源谱有一定差异, $M_{w}, f_{c}, \Delta\sigma, E_{s}$ 及 κ 的差异在可接受范围. 两步法将观 测记录的震源和场地项假定为地震大小相关的量 M_a,包含了该地震所有观测记录的平均震源谱和平 均场地效应,单个观测记录的实际 Ma 与平均 Ma存 在偏差,每个距离分段的传播路径衰减会吸收该距 离分段的所有观测记录的 M。偏差(主要来自于场地 项),如果该距离分段所有观测记录的 M。偏差均值 明显偏离 0,此时两步法传播路径衰减项出现偏差, 推断这是两步法和单步法传播路径衰减偏差明显的 根本原因.由高频路径衰减差异更显著,推断 M。在 高频段的变化性更显著,可能与高频场地效应强变 化性有关.为避免两步法路径衰减被场地项干扰,我 们建议尽可能采用单步法,但只研究地震震源特征 时,由于震源参数影响较小,也可用两步法.

4 震源参数求解中的权衡问题

常用网格搜索估计震源谱的特征参数(M_w, f_c, κ), 从一系列特征参数构建的理论震源谱中,利用网格 搜索寻找最接近反演震源谱的一组特征参数表示的 理论震源谱,作为震源谱特征参数的最佳估计.估 计 M_w, f_c 和 κ 时,这些参数之间可能存在的权衡会 影响结果估计的可靠性.

为评估这些参数之间的权衡,本研究利用一系 列 M_w 、 f_c 和 κ 先验值,根据式(4)、(5)构建光滑的先 验震源加速度谱(352个), M_w 取值3.75、4.25、5.00 和 6.00, f_c 取值0.3、0.5、0.8、1.0、1.5、2.0、3.0、4.0 Hz, κ 取值为0~0.05 s范围内以0.005 s等间隔递 增的一系列数值.利用6次典型地震的理论震源谱 与反演震源谱的残差修正先验震源谱,最终构建了 2 112个先验震源谱.网格搜索给出先验震源谱的 M_w 、 f_c 和 κ 估计值, M_w 估计与先验值之差(m)和 κ 估计与先验值之差(e)随 f_c 估计与先验值之比(*l*)的变化见图7.

 f_c 先验值 <2 Hz 时, f_c 估计值普遍偏小而 M_w 估计值普遍偏大, f_c 估计值偏小的程度越显著则 M_w 估计值偏大的程度也越显著,这说明 f_c 估计值越小则 M_w 估计值越大,两者之间存在一定的权衡. f_c 先验值为 0.5~2.0 Hz 时, f_c 估计值约为先验值的 80%~100%, M_w 估计值与先验值相差<0.1, M_w , f_c 估计值与先验值的差异均较小,说明 M_w 和 f_c 之间的权衡对 M_w 和 f_c 估计值的影响有限. f_c 先验值>2 Hz时, f_c 估

计值偏大而 M_w 估计值略有偏小,不论 f_c 估计值偏 大的程度如何 M_w 估计值偏小的程度近似不变,说 明两者之间几乎不存在权衡. f_c 先验值 ≤ 2 Hz时, f_c 和 κ 估计值均偏小, f_c 估计值越小 κ 估计值也越 小; f_c 先验值 ≥ 2 Hz, f_c 和 κ 估计值均偏大, f_c 估计值 越大 κ 估计值也越大,说明 f_c 与 κ 之间存在权衡. 由 于 κ 主要控制震源谱的高频段,为避免 f_c 与 κ 之间 权衡的影响,确保 M_w , f_c 的可靠估计,应尽量利用中 低频段的震源谱估计 M_w 和 f_c .

((a)*M*_w与*f*_c之间的权衡(b)κ与*f*_c之间的权衡
 图 7 震源谱特征参数之间的权衡
 Fig. 7 Trade-offs among those parameters describing source spectra.

针对 6次典型地震, κ 为最佳估计值, M_w 与 f_c的组合构建的理论震源谱与反演震源谱的拟合方 差见图 8. 图中: 红色实线表示拟合方差最小值对应 的 f_c值. 拟合方差的外包络线均呈开口向上抛物线, f_c对应于最小拟合方差值, f_c>0.5 Hz 4 次地震, 外包 络抛物线在 f_c 最佳估计附近谷值明显, 容易识别; f_c≤0.5 Hz 的 2 次地震, 外包络抛物线在 f_c 最佳估计 值附近十分平坦, 谷值不明显. 结果说明, f_c>0.5 Hz 时, M_w 和 f_c之间的权衡对 M_w 、f_c估计影响很小, 可 不予考虑, f_c≤0.5 Hz 时, 需考虑 M_w 和 f_c之间的权 衡, 一般情况下 f_c较小地震的震级较大, 其矩震级可 直接采用震源机制解的结果以处理 M_w 和 f_c之间的 权衡, 确保 f_c 的可靠估计.

5 结 论

本研究的主要结论如下:

 1)反演结果与参考场地的选取密切相关,建议 首先综合考虑台站观测记录数、场地地质资料、
 H/V谱比曲线等初选参考岩石场地,再以初选作为 参考场地,根据震源谱、震源参数、高频衰减参数试 算结果,最终选取合适的参考场地.

2)单步法和两步法的远场高频路径衰减差异显著,高频震源谱有一定差异, *M*_w、*f*_c、Δσ、*E*_s及κ差异较小.为避免两步法路径衰减被场地项干扰,建议采用单步法;如只研究地震震源特征,亦可采用两步法.

3) 网格搜索估计震源参数(M_w 、 f_c)和高频衰减 参数(κ)时, f_c 和 κ 之间存在权衡,为了尽可能避免 此影响,建议利用中低频段的震源谱估计 M_w 和 f_c 确保其可靠估计. f_c >2 Hz 时 M_w 和 f_c 之间存在一 定权衡,但 f_c >0.5 Hz 时,此权衡对 M_w 、 f_c 估计影响 很小, f_c 较小地震的震级较大,建议利用震源机制解 的 M_w 处理 M_w 和 f_c 之间的权衡,提高 f_c 估计的可靠性. **致谢**:中国地震局工程力学研究所基本科研业务费 专项(2018B03).

参考文献:

segmentation characteristics of aftershock source parameters of Wenchuan M8.0 earthquake in 2008[J]. Chinese Journal of Geophysics, 2009, 52(2): 365-371.

- [2] OTH A, BINDI D, PAROLAI S, et al. Spectral analysis of K-NET and KiK-net data in Japan, Part II: on attenuation characteristics, source spectra, and site response of borehole and surface stations[J]. Bulletin of the Seismological Society of America, 2011, 102(2): 667-687.
- [3] PACOR F, SPALLAROSSA D, OTH A, et al. Spectral models for ground motion prediction in the L' Aquila region (central Italy): Evidence for stress-drop dependence on magnitude and depth[J]. Geophysical

Journal International, 2016, 204(2): 716-737.

- [4] WANG Hongwei, REN Yefei, WEN Ruizhi, et al. Breakdown of earthquake self-similar scaling and source rupture directivity in the 2016-2017 central Italy seismic sequence[J]. Journal of Geophysical Research: Solid Earth, 219, 124(4): 3898-3917.
- [5] 赵翠萍,陈章立,华卫,等.中国大陆主要地震活动区中小地震震源参数研究[J].地球物理学报,2010,54(6):1478-1489.
 ZHAO Cuiping, CHEN Zangli, HUA Wei, et al. Study on source parameters of small to moderate earthquakes in the main seismic active regions, China mainland[J]. Chinese Journal Geophysics, 2010,54(6):1478-1489.
- [6] AMIR S-B, FARHAD S, SURYA P, et al. Estimation of geometrical spreading, quality factor and kappa in the Zagros region[J]. Soil Dynamics and Earthquake Engineering, 2020, 133: 106110.1-106110.11.
- [7] FU, Lei, LI Xiaojun, WANG Fang, et al. A study of site response and regional attenuation in the Longmen Shan region, eastern Tibetan plateau, SW China, from seismic recordings using the generalized inversion method[J]. Journal of Asian Earth Sciences, 2019, 181: 103887.1-103887.11.
- [8] 李红玉,于湘伟,章文波.场地效应研究的传递台站
 线性反演法——以芦山地震为例[J].地球物理学报,
 2017,60(1): 198-211.

LI Hongyu, YU Xiangwei, ZHANG Wenbo. Site effects estimation by transfer-station generalized inversion method — A case study of the Lushan earthquake[J]. Chinese Journal of Geophysics, 2017, 60(1): 198-211.

- [9] BINDI D, SPALLAROSSA D, PACOR F. Betweenevent and between-station variability observed in the Fourier and response spectra domains: Comparison with seismological models[J]. Geophysical Journal International, 2017, 210(2): 1092-1104.
- [10] CASTRO R R, ANDERSON J G, SINGH S K. Site response, attenuation, and source spectra of S waves along the Guerrero, Mexico subduction zone[J]. Bulletin of the Seismological Society of America, 1990, 80(6): 1481-1503.
- [11] OTH A, KAISER A E. Stress release and source scaling of the 2010–2011 Canterbury, New Zealand earthquake sequence from spectral inversion of ground

motion data[J]. Pure and Applied Geophysics, 2014, 171(10): 2767-2782.

- BINDI D, KOTHA S R. Spectral decomposition of the Engineering Strong Motion (ESM)flat file: regional attenuation, source scaling and Arias stress drop[J].
 Bulletin of Earthquake Engineering, 2020, 18(3): 2581-2606.
- [13] WANG Hongwei, REN Yefei, WEN Ruizhi. Source parameters, path attenuation and site effects from strong-motion recordings of the Wenchuan aftershocks (2008 —2013) using a non-parametric generalized inversion technique[J]. Geophysical Journal International, 2018, 212(2): 872-890.
- [14] BRUNE J N. Tectonic stress and the spectra of seismic shear waves from earthquakes[J]. Journal of Geophysical Research, 1970, 75(26): 4997-5009.
- [15] YOSHIMITSUN, ELLSWORTH W L, BEROZA G C. Robust stress drop estimates of potentially induced earthquakes in Oklahoma: evaluation of empirical Green's function[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(6): 5854-5866.
- [16] ANDREWS D J. Objective determination of source parameters and similarity of earthquakes of different size[J]. Geophysical Monographs Series, 1986, 37: 259-267.
- [17] BINDI D, CASTRO R R, FRANCESCHINA G, et al. The 1997-1998 Umbria –Marche sequence (central Italy): Source, path, and site effects estimated from strong motion data recorded in the epicentral area[J]. Journal of Geophysical Research, 2004, 109(B4): B04312.
- [18] TSURUGI M, TANAKA R, KAGAWA T, et al. Highfrequency spectral decay characteristics of seismic records of inland crustal earthquakes in Japan: evaluation of the f_{max} and κ models[J]. Bulletin of the Seismological Society of America, 2020, 110(2): 452-470.
- [19] ALLMANN B P, SHEARER P M. Global variations of stress drop for moderate to large earthquakes[J]. Journal of Geophysical Research, 2009, 114(B1): 1-22.
- [20] ANDERSON J G, HOUGH S E. A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies[J]. Bulletin of the Seismological Society of America, 1984, 74(5): 1969-1993.

(中文编辑:郭菊彬 英文编辑:兰俊思)